您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
155 行
5.5 KiB
155 行
5.5 KiB
import pytest
|
|
|
|
from mlagents.torch_utils import torch
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.settings import TrainerSettings, NetworkSettings
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.torch.agent_action import AgentAction
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
EPSILON = 1e-7
|
|
|
|
|
|
def create_policy_mock(
|
|
dummy_config: TrainerSettings,
|
|
use_rnn: bool = False,
|
|
use_discrete: bool = True,
|
|
use_visual: bool = False,
|
|
seed: int = 0,
|
|
) -> TorchPolicy:
|
|
mock_spec = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
|
|
trainer_settings = dummy_config
|
|
trainer_settings.keep_checkpoints = 3
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings() if use_rnn else None
|
|
)
|
|
policy = TorchPolicy(seed, mock_spec, trainer_settings)
|
|
return policy
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_policy_evaluate(rnn, visual, discrete):
|
|
# Test evaluate
|
|
policy = create_policy_mock(
|
|
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
decision_step, terminal_step = mb.create_steps_from_behavior_spec(
|
|
policy.behavior_spec, num_agents=NUM_AGENTS
|
|
)
|
|
|
|
run_out = policy.evaluate(decision_step, list(decision_step.agent_id))
|
|
if discrete:
|
|
run_out["action"].discrete.shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
else:
|
|
assert run_out["action"].continuous.shape == (NUM_AGENTS, VECTOR_ACTION_SPACE)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_evaluate_actions(rnn, visual, discrete):
|
|
policy = create_policy_mock(
|
|
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size)
|
|
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])]
|
|
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"])
|
|
agent_action = AgentAction.from_dict(buffer)
|
|
vis_obs = []
|
|
for idx, _ in enumerate(policy.actor_critic.network_body.visual_processors):
|
|
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx])
|
|
vis_obs.append(vis_ob)
|
|
|
|
memories = [
|
|
ModelUtils.list_to_tensor(buffer["memory"][i])
|
|
for i in range(0, len(buffer["memory"]), policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
|
|
log_probs, entropy, values = policy.evaluate_actions(
|
|
vec_obs,
|
|
vis_obs,
|
|
masks=act_masks,
|
|
actions=agent_action,
|
|
memories=memories,
|
|
seq_len=policy.sequence_length,
|
|
)
|
|
if discrete:
|
|
_size = policy.behavior_spec.action_spec.discrete_size
|
|
else:
|
|
_size = policy.behavior_spec.action_spec.continuous_size
|
|
|
|
assert log_probs.flatten().shape == (64, _size)
|
|
assert entropy.shape == (64,)
|
|
for val in values.values():
|
|
assert val.shape == (64,)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_sample_actions(rnn, visual, discrete):
|
|
policy = create_policy_mock(
|
|
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size)
|
|
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])]
|
|
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"])
|
|
|
|
vis_obs = []
|
|
for idx, _ in enumerate(policy.actor_critic.network_body.visual_processors):
|
|
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx])
|
|
vis_obs.append(vis_ob)
|
|
|
|
memories = [
|
|
ModelUtils.list_to_tensor(buffer["memory"][i])
|
|
for i in range(0, len(buffer["memory"]), policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
|
|
(sampled_actions, log_probs, entropies, memories) = policy.sample_actions(
|
|
vec_obs,
|
|
vis_obs,
|
|
masks=act_masks,
|
|
memories=memories,
|
|
seq_len=policy.sequence_length,
|
|
)
|
|
if discrete:
|
|
assert log_probs.all_discrete_tensor.shape == (
|
|
64,
|
|
sum(policy.behavior_spec.action_spec.discrete_branches),
|
|
)
|
|
else:
|
|
assert log_probs.continuous_tensor.shape == (
|
|
64,
|
|
policy.behavior_spec.action_spec.continuous_size,
|
|
)
|
|
assert entropies.shape == (64,)
|
|
|
|
if rnn:
|
|
assert memories.shape == (1, 1, policy.m_size)
|
|
|
|
|
|
def test_step_overflow():
|
|
policy = create_policy_mock(TrainerSettings())
|
|
policy.set_step(2 ** 31 - 1)
|
|
assert policy.get_current_step() == 2 ** 31 - 1 # step = 2147483647
|
|
policy.increment_step(3)
|
|
assert policy.get_current_step() == 2 ** 31 + 2 # step = 2147483650
|