Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

186 行
6.5 KiB

import pytest
from mlagents.torch_utils import torch
from mlagents.trainers.torch.networks import (
NetworkBody,
ValueNetwork,
SharedActorCritic,
SeparateActorCritic,
)
from mlagents.trainers.settings import NetworkSettings
from mlagents_envs.base_env import ActionSpec
from mlagents.trainers.tests.torch.test_encoders import compare_models
def test_networkbody_vector():
torch.manual_seed(0)
obs_size = 4
network_settings = NetworkSettings()
obs_shapes = [(obs_size,)]
networkbody = NetworkBody(obs_shapes, network_settings, encoded_act_size=2)
optimizer = torch.optim.Adam(networkbody.parameters(), lr=3e-3)
sample_obs = 0.1 * torch.ones((1, obs_size))
sample_act = 0.1 * torch.ones((1, 2))
for _ in range(300):
encoded, _ = networkbody([sample_obs], [], sample_act)
assert encoded.shape == (1, network_settings.hidden_units)
# Try to force output to 1
loss = torch.nn.functional.mse_loss(encoded, torch.ones(encoded.shape))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
assert _enc == pytest.approx(1.0, abs=0.1)
def test_networkbody_lstm():
torch.manual_seed(0)
obs_size = 4
seq_len = 16
network_settings = NetworkSettings(
memory=NetworkSettings.MemorySettings(sequence_length=seq_len, memory_size=12)
)
obs_shapes = [(obs_size,)]
networkbody = NetworkBody(obs_shapes, network_settings)
optimizer = torch.optim.Adam(networkbody.parameters(), lr=3e-4)
sample_obs = torch.ones((1, seq_len, obs_size))
for _ in range(200):
encoded, _ = networkbody([sample_obs], [], memories=torch.ones(1, seq_len, 12))
# Try to force output to 1
loss = torch.nn.functional.mse_loss(encoded, torch.ones(encoded.shape))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
assert _enc == pytest.approx(1.0, abs=0.1)
def test_networkbody_visual():
torch.manual_seed(0)
vec_obs_size = 4
obs_size = (84, 84, 3)
network_settings = NetworkSettings()
obs_shapes = [(vec_obs_size,), obs_size]
networkbody = NetworkBody(obs_shapes, network_settings)
optimizer = torch.optim.Adam(networkbody.parameters(), lr=3e-3)
sample_obs = 0.1 * torch.ones((1, 84, 84, 3))
sample_vec_obs = torch.ones((1, vec_obs_size))
for _ in range(150):
encoded, _ = networkbody([sample_vec_obs], [sample_obs])
assert encoded.shape == (1, network_settings.hidden_units)
# Try to force output to 1
loss = torch.nn.functional.mse_loss(encoded, torch.ones(encoded.shape))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
assert _enc == pytest.approx(1.0, abs=0.1)
def test_valuenetwork():
torch.manual_seed(0)
obs_size = 4
num_outputs = 2
network_settings = NetworkSettings()
obs_shapes = [(obs_size,)]
stream_names = [f"stream_name{n}" for n in range(4)]
value_net = ValueNetwork(
stream_names, obs_shapes, network_settings, outputs_per_stream=num_outputs
)
optimizer = torch.optim.Adam(value_net.parameters(), lr=3e-3)
for _ in range(50):
sample_obs = torch.ones((1, obs_size))
values, _ = value_net([sample_obs], [])
loss = 0
for s_name in stream_names:
assert values[s_name].shape == (1, num_outputs)
# Try to force output to 1
loss += torch.nn.functional.mse_loss(
values[s_name], torch.ones((1, num_outputs))
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for value in values.values():
for _out in value:
assert _out[0] == pytest.approx(1.0, abs=0.1)
@pytest.mark.parametrize("ac_type", [SharedActorCritic, SeparateActorCritic])
@pytest.mark.parametrize("lstm", [True, False])
def test_actor_critic(ac_type, lstm):
obs_size = 4
network_settings = NetworkSettings(
memory=NetworkSettings.MemorySettings() if lstm else None, normalize=True
)
obs_shapes = [(obs_size,)]
act_size = 2
mask = torch.ones([1, act_size * 2])
stream_names = [f"stream_name{n}" for n in range(4)]
# action_spec = ActionSpec.create_continuous(act_size[0])
action_spec = ActionSpec(act_size, tuple(act_size for _ in range(act_size)))
actor = ac_type(obs_shapes, network_settings, action_spec, stream_names)
if lstm:
sample_obs = torch.ones((1, network_settings.memory.sequence_length, obs_size))
memories = torch.ones(
(1, network_settings.memory.sequence_length, actor.memory_size)
)
else:
sample_obs = torch.ones((1, obs_size))
memories = torch.tensor([])
# memories isn't always set to None, the network should be able to
# deal with that.
# Test critic pass
value_out, memories_out = actor.critic_pass([sample_obs], [], memories=memories)
for stream in stream_names:
if lstm:
assert value_out[stream].shape == (network_settings.memory.sequence_length,)
assert memories_out.shape == memories.shape
else:
assert value_out[stream].shape == (1,)
# Test get action stats and_value
action, log_probs, entropies, value_out, mem_out = actor.get_action_stats_and_value(
[sample_obs], [], memories=memories, masks=mask
)
if lstm:
assert action.continuous_tensor.shape == (64, 2)
else:
assert action.continuous_tensor.shape == (1, 2)
assert len(action.discrete_list) == 2
for _disc in action.discrete_list:
if lstm:
assert _disc.shape == (64, 1)
else:
assert _disc.shape == (1, 1)
if mem_out is not None:
assert mem_out.shape == memories.shape
for stream in stream_names:
if lstm:
assert value_out[stream].shape == (network_settings.memory.sequence_length,)
else:
assert value_out[stream].shape == (1,)
# Test normalization
actor.update_normalization(sample_obs)
if isinstance(actor, SeparateActorCritic):
for act_proc, crit_proc in zip(
actor.network_body.vector_processors,
actor.critic.network_body.vector_processors,
):
assert compare_models(act_proc, crit_proc)