Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

134 行
4.6 KiB

import numpy as np
from typing import *
from functools import *
from collections import OrderedDict
from abc import ABC, abstractmethod
from .exception import SamplerException
class Sampler(ABC):
@abstractmethod
def sample_parameter(self) -> float:
pass
class UniformSampler(Sampler):
"""
Uniformly draws a single sample in the range [min_value, max_value).
"""
def __init__(
self, min_value: Union[int, float], max_value: Union[int, float], **kwargs
) -> None:
self.min_value = min_value
self.max_value = max_value
def sample_parameter(self) -> float:
return np.random.uniform(self.min_value, self.max_value)
class MultiRangeUniformSampler(Sampler):
"""
Draws a single sample uniformly from the intervals provided. The sampler
first picks an interval based on a weighted selection, with the weights
assigned to an interval based on its range. After picking the range,
it proceeds to pick a value uniformly in that range.
"""
def __init__(self, intervals: List[List[Union[int, float]]], **kwargs) -> None:
self.intervals = intervals
# Measure the length of the intervals
interval_lengths = [abs(x[1] - x[0]) for x in self.intervals]
cum_interval_length = sum(interval_lengths)
# Assign weights to an interval proportionate to the interval size
self.interval_weights = [x / cum_interval_length for x in interval_lengths]
def sample_parameter(self) -> float:
cur_min, cur_max = self.intervals[
np.random.choice(len(self.intervals), p=self.interval_weights)
]
return np.random.uniform(cur_min, cur_max)
class GaussianSampler(Sampler):
"""
Draw a single sample value from a normal (gaussian) distribution.
This sampler is characterized by the mean and the standard deviation.
"""
def __init__(
self, mean: Union[float, int], st_dev: Union[float, int], **kwargs
) -> None:
self.mean = mean
self.st_dev = st_dev
def sample_parameter(self) -> float:
return np.random.normal(self.mean, self.st_dev)
class SamplerFactory:
"""
Maintain a directory of all samplers available.
Add new samplers using the register_sampler method.
"""
NAME_TO_CLASS = {
"uniform": UniformSampler,
"gaussian": GaussianSampler,
"multirange_uniform": MultiRangeUniformSampler,
}
@staticmethod
def register_sampler(name: str, sampler_cls: Type[Sampler]) -> None:
SamplerFactory.NAME_TO_CLASS[name] = sampler_cls
@staticmethod
def init_sampler_class(name: str, params: Dict[str, Any]):
if name not in SamplerFactory.NAME_TO_CLASS:
raise SamplerException(
name + " sampler is not registered in the SamplerFactory."
" Use the register_sample method to register the string"
" associated to your sampler in the SamplerFactory."
)
sampler_cls = SamplerFactory.NAME_TO_CLASS[name]
try:
return sampler_cls(**params)
except TypeError:
raise SamplerException(
"The sampler class associated to the " + name + " key in the factory "
"was not provided the required arguments. Please ensure that the sampler "
"config file consists of the appropriate keys for this sampler class."
)
class SamplerManager:
def __init__(self, reset_param_dict: Dict[str, Any]) -> None:
self.reset_param_dict = reset_param_dict if reset_param_dict else {}
assert isinstance(self.reset_param_dict, dict)
self.samplers: Dict[str, Sampler] = {}
for param_name, cur_param_dict in self.reset_param_dict.items():
if "sampler-type" not in cur_param_dict:
raise SamplerException(
"'sampler_type' argument hasn't been supplied for the {0} parameter".format(
param_name
)
)
sampler_name = cur_param_dict.pop("sampler-type")
param_sampler = SamplerFactory.init_sampler_class(
sampler_name, cur_param_dict
)
self.samplers[param_name] = param_sampler
def is_empty(self) -> bool:
"""
Check for if sampler_manager is empty.
"""
return not bool(self.samplers)
def sample_all(self) -> Dict[str, float]:
res = {}
for param_name, param_sampler in list(self.samplers.items()):
res[param_name] = param_sampler.sample_parameter()
return res