您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
384 行
18 KiB
384 行
18 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning
|
|
"""Launches trainers for each External Brains in a Unity Environment."""
|
|
|
|
import os
|
|
import glob
|
|
import logging
|
|
import shutil
|
|
|
|
import yaml
|
|
import re
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow.python.tools import freeze_graph
|
|
from mlagents.envs.environment import UnityEnvironment
|
|
from mlagents.envs.exception import UnityEnvironmentException
|
|
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
|
|
from mlagents.trainers.bc.online_trainer import OnlineBCTrainer
|
|
from mlagents.trainers.meta_curriculum import MetaCurriculum
|
|
from mlagents.trainers.exception import MetaCurriculumError
|
|
|
|
|
|
class TrainerController(object):
|
|
def __init__(self, env_path, run_id, save_freq, curriculum_folder,
|
|
fast_simulation, load, train, worker_id, keep_checkpoints,
|
|
lesson, seed, docker_target_name,
|
|
trainer_config_path, no_graphics):
|
|
"""
|
|
:param env_path: Location to the environment executable to be loaded.
|
|
:param run_id: The sub-directory name for model and summary statistics
|
|
:param save_freq: Frequency at which to save model
|
|
:param curriculum_folder: Folder containing JSON curriculums for the
|
|
environment.
|
|
:param fast_simulation: Whether to run the game at training speed.
|
|
:param load: Whether to load the model or randomly initialize.
|
|
:param train: Whether to train model, or only run inference.
|
|
:param worker_id: Number to add to communication port (5005).
|
|
Used for multi-environment
|
|
:param keep_checkpoints: How many model checkpoints to keep.
|
|
:param lesson: Start learning from this lesson.
|
|
:param seed: Random seed used for training.
|
|
:param docker_target_name: Name of docker volume that will contain all
|
|
data.
|
|
:param trainer_config_path: Fully qualified path to location of trainer
|
|
configuration file.
|
|
:param no_graphics: Whether to run the Unity simulator in no-graphics
|
|
mode.
|
|
"""
|
|
if env_path is not None:
|
|
# Strip out executable extensions if passed
|
|
env_path = (env_path.strip()
|
|
.replace('.app', '')
|
|
.replace('.exe', '')
|
|
.replace('.x86_64', '')
|
|
.replace('.x86', ''))
|
|
|
|
# Recognize and use docker volume if one is passed as an argument
|
|
if not docker_target_name:
|
|
self.docker_training = False
|
|
self.trainer_config_path = trainer_config_path
|
|
self.model_path = './models/{run_id}'.format(run_id=run_id)
|
|
self.curriculum_folder = curriculum_folder
|
|
self.summaries_dir = './summaries'
|
|
else:
|
|
self.docker_training = True
|
|
self.trainer_config_path = \
|
|
'/{docker_target_name}/{trainer_config_path}'.format(
|
|
docker_target_name=docker_target_name,
|
|
trainer_config_path = trainer_config_path)
|
|
self.model_path = '/{docker_target_name}/models/{run_id}'.format(
|
|
docker_target_name=docker_target_name,
|
|
run_id=run_id)
|
|
if env_path is not None:
|
|
"""
|
|
Comments for future maintenance:
|
|
Some OS/VM instances (e.g. COS GCP Image) mount filesystems
|
|
with COS flag which prevents execution of the Unity scene,
|
|
to get around this, we will copy the executable into the
|
|
container.
|
|
"""
|
|
# Navigate in docker path and find env_path and copy it.
|
|
env_path = self._prepare_for_docker_run(docker_target_name,
|
|
env_path)
|
|
if curriculum_folder is not None:
|
|
self.curriculum_folder = \
|
|
'/{docker_target_name}/{curriculum_folder}'.format(
|
|
docker_target_name=docker_target_name,
|
|
curriculum_folder=curriculum_folder)
|
|
|
|
self.summaries_dir = '/{docker_target_name}/summaries'.format(
|
|
docker_target_name=docker_target_name)
|
|
|
|
self.logger = logging.getLogger('mlagents.envs')
|
|
self.run_id = run_id
|
|
self.save_freq = save_freq
|
|
self.lesson = lesson
|
|
self.fast_simulation = fast_simulation
|
|
self.load_model = load
|
|
self.train_model = train
|
|
self.worker_id = worker_id
|
|
self.keep_checkpoints = keep_checkpoints
|
|
self.trainers = {}
|
|
self.seed = seed
|
|
np.random.seed(self.seed)
|
|
tf.set_random_seed(self.seed)
|
|
self.env = UnityEnvironment(file_name=env_path,
|
|
worker_id=self.worker_id,
|
|
seed=self.seed,
|
|
docker_training=self.docker_training,
|
|
no_graphics=no_graphics)
|
|
if env_path is None:
|
|
self.env_name = 'editor_' + self.env.academy_name
|
|
else:
|
|
# Extract out name of environment
|
|
self.env_name = os.path.basename(os.path.normpath(env_path))
|
|
|
|
if curriculum_folder is None:
|
|
self.meta_curriculum = None
|
|
else:
|
|
self.meta_curriculum = MetaCurriculum(self.curriculum_folder,
|
|
self.env._resetParameters)
|
|
|
|
if self.meta_curriculum:
|
|
for brain_name in self.meta_curriculum.brains_to_curriculums.keys():
|
|
if brain_name not in self.env.external_brain_names:
|
|
raise MetaCurriculumError('One of the curriculums '
|
|
'defined in ' +
|
|
self.curriculum_folder + ' '
|
|
'does not have a corresponding '
|
|
'Brain. Check that the '
|
|
'curriculum file has the same '
|
|
'name as the Brain '
|
|
'whose curriculum it defines.')
|
|
|
|
def _prepare_for_docker_run(self, docker_target_name, env_path):
|
|
for f in glob.glob('/{docker_target_name}/*'.format(
|
|
docker_target_name=docker_target_name)):
|
|
if env_path in f:
|
|
try:
|
|
b = os.path.basename(f)
|
|
if os.path.isdir(f):
|
|
shutil.copytree(f,
|
|
'/ml-agents/{b}'.format(b=b))
|
|
else:
|
|
src_f = '/{docker_target_name}/{b}'.format(
|
|
docker_target_name=docker_target_name, b=b)
|
|
dst_f = '/ml-agents/{b}'.format(b=b)
|
|
shutil.copyfile(src_f, dst_f)
|
|
os.chmod(dst_f, 0o775) # Make executable
|
|
except Exception as e:
|
|
self.logger.info(e)
|
|
env_path = '/ml-agents/{env_name}'.format(env_name=env_path)
|
|
return env_path
|
|
|
|
def _get_measure_vals(self):
|
|
if self.meta_curriculum:
|
|
brain_names_to_measure_vals = {}
|
|
for brain_name, curriculum \
|
|
in self.meta_curriculum.brains_to_curriculums.items():
|
|
if curriculum.measure == 'progress':
|
|
measure_val = (self.trainers[brain_name].get_step /
|
|
self.trainers[brain_name].get_max_steps)
|
|
brain_names_to_measure_vals[brain_name] = measure_val
|
|
elif curriculum.measure == 'reward':
|
|
measure_val = np.mean(self.trainers[brain_name]
|
|
.reward_buffer)
|
|
brain_names_to_measure_vals[brain_name] = measure_val
|
|
return brain_names_to_measure_vals
|
|
else:
|
|
return None
|
|
|
|
def _save_model(self,steps=0):
|
|
"""
|
|
Saves current model to checkpoint folder.
|
|
:param steps: Current number of steps in training process.
|
|
:param saver: Tensorflow saver for session.
|
|
"""
|
|
for brain_name in self.trainers.keys():
|
|
self.trainers[brain_name].save_model()
|
|
self.logger.info('Saved Model')
|
|
|
|
def _export_graph(self):
|
|
"""
|
|
Exports latest saved models to .bytes format for Unity embedding.
|
|
"""
|
|
for brain_name in self.trainers.keys():
|
|
self.trainers[brain_name].export_model()
|
|
|
|
def _initialize_trainers(self, trainer_config):
|
|
"""
|
|
Initialization of the trainers
|
|
:param trainer_config: The configurations of the trainers
|
|
"""
|
|
trainer_parameters_dict = {}
|
|
for brain_name in self.env.external_brain_names:
|
|
trainer_parameters = trainer_config['default'].copy()
|
|
trainer_parameters['summary_path'] = '{basedir}/{name}'.format(
|
|
basedir=self.summaries_dir,
|
|
name=str(self.run_id) + '_' + brain_name)
|
|
trainer_parameters['model_path'] = '{basedir}/{name}'.format(
|
|
basedir=self.model_path,
|
|
name=brain_name)
|
|
trainer_parameters['keep_checkpoints'] = self.keep_checkpoints
|
|
if brain_name in trainer_config:
|
|
_brain_key = brain_name
|
|
while not isinstance(trainer_config[_brain_key], dict):
|
|
_brain_key = trainer_config[_brain_key]
|
|
for k in trainer_config[_brain_key]:
|
|
trainer_parameters[k] = trainer_config[_brain_key][k]
|
|
trainer_parameters_dict[brain_name] = trainer_parameters.copy()
|
|
for brain_name in self.env.external_brain_names:
|
|
if trainer_parameters_dict[brain_name]['trainer'] == 'offline_bc':
|
|
self.trainers[brain_name] = OfflineBCTrainer(
|
|
self.env.brains[brain_name],
|
|
trainer_parameters_dict[brain_name], self.train_model,
|
|
self.load_model, self.seed, self.run_id)
|
|
elif trainer_parameters_dict[brain_name]['trainer'] == 'online_bc':
|
|
self.trainers[brain_name] = OnlineBCTrainer(
|
|
self.env.brains[brain_name],
|
|
trainer_parameters_dict[brain_name], self.train_model,
|
|
self.load_model, self.seed, self.run_id)
|
|
elif trainer_parameters_dict[brain_name]['trainer'] == 'ppo':
|
|
self.trainers[brain_name] = PPOTrainer(
|
|
self.env.brains[brain_name],
|
|
self.meta_curriculum
|
|
.brains_to_curriculums[brain_name]
|
|
.min_lesson_length if self.meta_curriculum else 0,
|
|
trainer_parameters_dict[brain_name],
|
|
self.train_model, self.load_model, self.seed, self.run_id)
|
|
else:
|
|
raise UnityEnvironmentException('The trainer config contains '
|
|
'an unknown trainer type for '
|
|
'brain {}'
|
|
.format(brain_name))
|
|
|
|
def _load_config(self):
|
|
try:
|
|
with open(self.trainer_config_path) as data_file:
|
|
trainer_config = yaml.load(data_file)
|
|
return trainer_config
|
|
except IOError:
|
|
raise UnityEnvironmentException('Parameter file could not be found '
|
|
'at {}.'
|
|
.format(self.trainer_config_path))
|
|
except UnicodeDecodeError:
|
|
raise UnityEnvironmentException('There was an error decoding '
|
|
'Trainer Config from this path : {}'
|
|
.format(self.trainer_config_path))
|
|
|
|
@staticmethod
|
|
def _create_model_path(model_path):
|
|
try:
|
|
if not os.path.exists(model_path):
|
|
os.makedirs(model_path)
|
|
except Exception:
|
|
raise UnityEnvironmentException('The folder {} containing the '
|
|
'generated model could not be '
|
|
'accessed. Please make sure the '
|
|
'permissions are set correctly.'
|
|
.format(model_path))
|
|
|
|
def _reset_env(self):
|
|
"""Resets the environment.
|
|
|
|
Returns:
|
|
A Data structure corresponding to the initial reset state of the
|
|
environment.
|
|
"""
|
|
if self.meta_curriculum is not None:
|
|
return self.env.reset(config=self.meta_curriculum.get_config(),
|
|
train_mode=self.fast_simulation)
|
|
else:
|
|
return self.env.reset(train_mode=self.fast_simulation)
|
|
|
|
def start_learning(self):
|
|
# TODO: Should be able to start learning at different lesson numbers
|
|
# for each curriculum.
|
|
if self.meta_curriculum is not None:
|
|
self.meta_curriculum.set_all_curriculums_to_lesson_num(self.lesson)
|
|
trainer_config = self._load_config()
|
|
self._create_model_path(self.model_path)
|
|
|
|
tf.reset_default_graph()
|
|
|
|
# Prevent a single session from taking all GPU memory.
|
|
self._initialize_trainers(trainer_config)
|
|
for _, t in self.trainers.items():
|
|
self.logger.info(t)
|
|
global_step = 0 # This is only for saving the model
|
|
curr_info = self._reset_env()
|
|
if self.train_model:
|
|
for brain_name, trainer in self.trainers.items():
|
|
trainer.write_tensorboard_text('Hyperparameters',
|
|
trainer.parameters)
|
|
try:
|
|
while any([t.get_step <= t.get_max_steps \
|
|
for k, t in self.trainers.items()]) \
|
|
or not self.train_model:
|
|
if self.meta_curriculum:
|
|
# Get the sizes of the reward buffers.
|
|
reward_buff_sizes = {k:len(t.reward_buffer) \
|
|
for (k,t) in self.trainers.items()}
|
|
# Attempt to increment the lessons of the brains who
|
|
# were ready.
|
|
lessons_incremented = \
|
|
self.meta_curriculum.increment_lessons(
|
|
self._get_measure_vals(),
|
|
reward_buff_sizes=reward_buff_sizes)
|
|
|
|
# If any lessons were incremented or the environment is
|
|
# ready to be reset
|
|
if (self.meta_curriculum
|
|
and any(lessons_incremented.values())):
|
|
curr_info = self._reset_env()
|
|
for brain_name, trainer in self.trainers.items():
|
|
trainer.end_episode()
|
|
for brain_name, changed in lessons_incremented.items():
|
|
if changed:
|
|
self.trainers[brain_name].reward_buffer.clear()
|
|
elif self.env.global_done:
|
|
curr_info = self._reset_env()
|
|
for brain_name, trainer in self.trainers.items():
|
|
trainer.end_episode()
|
|
|
|
# Decide and take an action
|
|
take_action_vector, \
|
|
take_action_memories, \
|
|
take_action_text, \
|
|
take_action_value, \
|
|
take_action_outputs \
|
|
= {}, {}, {}, {}, {}
|
|
for brain_name, trainer in self.trainers.items():
|
|
(take_action_vector[brain_name],
|
|
take_action_memories[brain_name],
|
|
take_action_text[brain_name],
|
|
take_action_value[brain_name],
|
|
take_action_outputs[brain_name]) = \
|
|
trainer.take_action(curr_info)
|
|
new_info = self.env.step(vector_action=take_action_vector,
|
|
memory=take_action_memories,
|
|
text_action=take_action_text,
|
|
value=take_action_value)
|
|
for brain_name, trainer in self.trainers.items():
|
|
trainer.add_experiences(curr_info, new_info,
|
|
take_action_outputs[brain_name])
|
|
trainer.process_experiences(curr_info, new_info)
|
|
if trainer.is_ready_update() and self.train_model \
|
|
and trainer.get_step <= trainer.get_max_steps:
|
|
# Perform gradient descent with experience buffer
|
|
trainer.update_policy()
|
|
# Write training statistics to Tensorboard.
|
|
if self.meta_curriculum is not None:
|
|
trainer.write_summary(
|
|
global_step,
|
|
lesson_num=self.meta_curriculum
|
|
.brains_to_curriculums[brain_name]
|
|
.lesson_num)
|
|
else:
|
|
trainer.write_summary(global_step)
|
|
if self.train_model \
|
|
and trainer.get_step <= trainer.get_max_steps:
|
|
trainer.increment_step_and_update_last_reward()
|
|
global_step += 1
|
|
if global_step % self.save_freq == 0 and global_step != 0 \
|
|
and self.train_model:
|
|
# Save Tensorflow model
|
|
self._save_model(steps=global_step)
|
|
curr_info = new_info
|
|
# Final save Tensorflow model
|
|
if global_step != 0 and self.train_model:
|
|
self._save_model(steps=global_step)
|
|
except KeyboardInterrupt:
|
|
print('--------------------------Now saving model--------------'
|
|
'-----------')
|
|
if self.train_model:
|
|
self.logger.info('Learning was interrupted. Please wait '
|
|
'while the graph is generated.')
|
|
self._save_model(steps=global_step)
|
|
pass
|
|
self.env.close()
|
|
if self.train_model:
|
|
self._export_graph()
|