Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

168 行
5.8 KiB

import os
from typing import Dict
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager
from mlagents.trainers.exception import TrainerConfigError
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.ghost.trainer import GhostTrainer
from mlagents.trainers.ghost.controller import GhostController
from mlagents.trainers.settings import TrainerSettings, TrainerType
logger = get_logger(__name__)
class TrainerFactory:
def __init__(
self,
trainer_config: Dict[str, TrainerSettings],
output_path: str,
train_model: bool,
load_model: bool,
seed: int,
param_manager: EnvironmentParameterManager,
init_path: str = None,
multi_gpu: bool = False,
):
self.trainer_config = trainer_config
self.output_path = output_path
self.init_path = init_path
self.train_model = train_model
self.load_model = load_model
self.seed = seed
self.param_manager = param_manager
self.multi_gpu = multi_gpu
self.ghost_controller = GhostController()
def generate(self, brain_name: str) -> Trainer:
return initialize_trainer(
self.trainer_config[brain_name],
brain_name,
self.output_path,
self.train_model,
self.load_model,
self.ghost_controller,
self.seed,
self.param_manager,
self.init_path,
self.multi_gpu,
)
def initialize_trainer(
trainer_settings: TrainerSettings,
brain_name: str,
output_path: str,
train_model: bool,
load_model: bool,
ghost_controller: GhostController,
seed: int,
param_manager: EnvironmentParameterManager,
init_path: str = None,
multi_gpu: bool = False,
) -> Trainer:
"""
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
some general training session options.
:param trainer_settings: Original trainer configuration loaded from YAML
:param brain_name: Name of the brain to be associated with trainer
:param output_path: Path to save the model and summary statistics
:param keep_checkpoints: How many model checkpoints to keep
:param train_model: Whether to train the model (vs. run inference)
:param load_model: Whether to load the model or randomly initialize
:param ghost_controller: The object that coordinates ghost trainers
:param seed: The random seed to use
:param param_manager: EnvironmentParameterManager, used to determine a reward buffer length for PPOTrainer
:param init_path: Path from which to load model, if different from model_path.
:return:
"""
trainer_artifact_path = os.path.join(output_path, brain_name)
if init_path is not None:
trainer_settings.init_path = os.path.join(init_path, brain_name)
min_lesson_length = param_manager.get_minimum_reward_buffer_size(brain_name)
trainer: Trainer = None # type: ignore # will be set to one of these, or raise
trainer_type = trainer_settings.trainer_type
if trainer_type == TrainerType.PPO:
trainer = PPOTrainer(
brain_name,
min_lesson_length,
trainer_settings,
train_model,
load_model,
seed,
trainer_artifact_path,
)
elif trainer_type == TrainerType.SAC:
trainer = SACTrainer(
brain_name,
min_lesson_length,
trainer_settings,
train_model,
load_model,
seed,
trainer_artifact_path,
)
else:
raise TrainerConfigError(
f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}'
)
if trainer_settings.self_play is not None:
trainer = GhostTrainer(
trainer,
brain_name,
ghost_controller,
min_lesson_length,
trainer_settings,
train_model,
trainer_artifact_path,
)
return trainer
def handle_existing_directories(
output_path: str, resume: bool, force: bool, init_path: str = None
) -> None:
"""
Validates that if the run_id model exists, we do not overwrite it unless --force is specified.
Throws an exception if resume isn't specified and run_id exists. Throws an exception
if --resume is specified and run-id was not found.
:param model_path: The model path specified.
:param summary_path: The summary path to be used.
:param resume: Whether or not the --resume flag was passed.
:param force: Whether or not the --force flag was passed.
"""
output_path_exists = os.path.isdir(output_path)
if output_path_exists:
if not resume and not force:
raise UnityTrainerException(
"Previous data from this run ID was found. "
"Either specify a new run ID, use --resume to resume this run, "
"or use the --force parameter to overwrite existing data."
)
else:
if resume:
raise UnityTrainerException(
"Previous data from this run ID was not found. "
"Train a new run by removing the --resume flag."
)
# Verify init path if specified.
if init_path is not None:
if not os.path.isdir(init_path):
raise UnityTrainerException(
"Could not initialize from {}. "
"Make sure models have already been saved with that run ID.".format(
init_path
)
)