您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
444 行
17 KiB
444 行
17 KiB
from typing import Dict, Optional
|
|
from mlagents.tf_utils import tf
|
|
from mlagents.trainers.models import ModelUtils, EncoderType
|
|
|
|
LOG_STD_MAX = 2
|
|
LOG_STD_MIN = -20
|
|
EPSILON = 1e-6 # Small value to avoid divide by zero
|
|
DISCRETE_TARGET_ENTROPY_SCALE = 0.2 # Roughly equal to e-greedy 0.05
|
|
CONTINUOUS_TARGET_ENTROPY_SCALE = 1.0 # TODO: Make these an optional hyperparam.
|
|
POLICY_SCOPE = ""
|
|
TARGET_SCOPE = "target_network"
|
|
|
|
|
|
class SACNetwork:
|
|
"""
|
|
Base class for an SAC network. Implements methods for creating the actor and critic heads.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy=None,
|
|
m_size=None,
|
|
h_size=128,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
num_layers=2,
|
|
stream_names=None,
|
|
vis_encode_type=EncoderType.SIMPLE,
|
|
):
|
|
self.normalize = normalize
|
|
self.use_recurrent = use_recurrent
|
|
self.num_layers = num_layers
|
|
self.stream_names = stream_names
|
|
self.h_size = h_size
|
|
self.activ_fn = ModelUtils.swish
|
|
|
|
self.sequence_length_ph = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="sac_sequence_length"
|
|
)
|
|
|
|
self.policy_memory_in: Optional[tf.Tensor] = None
|
|
self.policy_memory_out: Optional[tf.Tensor] = None
|
|
self.value_memory_in: Optional[tf.Tensor] = None
|
|
self.value_memory_out: Optional[tf.Tensor] = None
|
|
self.q1: Optional[tf.Tensor] = None
|
|
self.q2: Optional[tf.Tensor] = None
|
|
self.q1_p: Optional[tf.Tensor] = None
|
|
self.q2_p: Optional[tf.Tensor] = None
|
|
self.q1_memory_in: Optional[tf.Tensor] = None
|
|
self.q2_memory_in: Optional[tf.Tensor] = None
|
|
self.q1_memory_out: Optional[tf.Tensor] = None
|
|
self.q2_memory_out: Optional[tf.Tensor] = None
|
|
self.prev_action: Optional[tf.Tensor] = None
|
|
self.action_masks: Optional[tf.Tensor] = None
|
|
self.external_action_in: Optional[tf.Tensor] = None
|
|
self.log_sigma_sq: Optional[tf.Tensor] = None
|
|
self.entropy: Optional[tf.Tensor] = None
|
|
self.deterministic_output: Optional[tf.Tensor] = None
|
|
self.normalized_logprobs: Optional[tf.Tensor] = None
|
|
self.action_probs: Optional[tf.Tensor] = None
|
|
self.output_oh: Optional[tf.Tensor] = None
|
|
self.output_pre: Optional[tf.Tensor] = None
|
|
|
|
self.value_vars = None
|
|
self.q_vars = None
|
|
self.critic_vars = None
|
|
self.policy_vars = None
|
|
|
|
self.q1_heads: Dict[str, tf.Tensor] = None
|
|
self.q2_heads: Dict[str, tf.Tensor] = None
|
|
self.q1_pheads: Dict[str, tf.Tensor] = None
|
|
self.q2_pheads: Dict[str, tf.Tensor] = None
|
|
|
|
self.policy = policy
|
|
|
|
def get_vars(self, scope):
|
|
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope)
|
|
|
|
def join_scopes(self, scope_1, scope_2):
|
|
"""
|
|
Joins two scopes. Does so safetly (i.e., if one of the two scopes doesn't
|
|
exist, don't add any backslashes)
|
|
"""
|
|
if not scope_1:
|
|
return scope_2
|
|
if not scope_2:
|
|
return scope_1
|
|
else:
|
|
return "/".join(filter(None, [scope_1, scope_2]))
|
|
|
|
def create_value_heads(self, stream_names, hidden_input):
|
|
"""
|
|
Creates one value estimator head for each reward signal in stream_names.
|
|
Also creates the node corresponding to the mean of all the value heads in self.value.
|
|
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
|
|
:param stream_names: The list of reward signal names
|
|
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
|
|
of the hidden input.
|
|
"""
|
|
self.value_heads = {}
|
|
for name in stream_names:
|
|
value = tf.layers.dense(hidden_input, 1, name="{}_value".format(name))
|
|
self.value_heads[name] = value
|
|
self.value = tf.reduce_mean(list(self.value_heads.values()), 0)
|
|
|
|
def _create_cc_critic(self, hidden_value, scope, create_qs=True):
|
|
"""
|
|
Creates just the critic network
|
|
"""
|
|
scope = self.join_scopes(scope, "critic")
|
|
self.create_sac_value_head(
|
|
self.stream_names,
|
|
hidden_value,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "value"),
|
|
)
|
|
self.external_action_in = tf.placeholder(
|
|
shape=[None, self.policy.act_size[0]],
|
|
dtype=tf.float32,
|
|
name="external_action_in",
|
|
)
|
|
self.value_vars = self.get_vars(self.join_scopes(scope, "value"))
|
|
if create_qs:
|
|
hidden_q = tf.concat([hidden_value, self.external_action_in], axis=-1)
|
|
hidden_qp = tf.concat([hidden_value, self.policy.output], axis=-1)
|
|
self.q1_heads, self.q2_heads, self.q1, self.q2 = self.create_q_heads(
|
|
self.stream_names,
|
|
hidden_q,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "q"),
|
|
)
|
|
self.q1_pheads, self.q2_pheads, self.q1_p, self.q2_p = self.create_q_heads(
|
|
self.stream_names,
|
|
hidden_qp,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "q"),
|
|
reuse=True,
|
|
)
|
|
self.q_vars = self.get_vars(self.join_scopes(scope, "q"))
|
|
self.critic_vars = self.get_vars(scope)
|
|
|
|
def _create_dc_critic(self, hidden_value, scope, create_qs=True):
|
|
"""
|
|
Creates just the critic network
|
|
"""
|
|
scope = self.join_scopes(scope, "critic")
|
|
self.create_sac_value_head(
|
|
self.stream_names,
|
|
hidden_value,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "value"),
|
|
)
|
|
|
|
self.value_vars = self.get_vars("/".join([scope, "value"]))
|
|
|
|
if create_qs:
|
|
self.q1_heads, self.q2_heads, self.q1, self.q2 = self.create_q_heads(
|
|
self.stream_names,
|
|
hidden_value,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "q"),
|
|
num_outputs=sum(self.policy.act_size),
|
|
)
|
|
self.q1_pheads, self.q2_pheads, self.q1_p, self.q2_p = self.create_q_heads(
|
|
self.stream_names,
|
|
hidden_value,
|
|
self.num_layers,
|
|
self.h_size,
|
|
self.join_scopes(scope, "q"),
|
|
reuse=True,
|
|
num_outputs=sum(self.policy.act_size),
|
|
)
|
|
self.q_vars = self.get_vars(scope)
|
|
self.critic_vars = self.get_vars(scope)
|
|
|
|
def create_sac_value_head(
|
|
self, stream_names, hidden_input, num_layers, h_size, scope
|
|
):
|
|
"""
|
|
Creates one value estimator head for each reward signal in stream_names.
|
|
Also creates the node corresponding to the mean of all the value heads in self.value.
|
|
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
|
|
:param stream_names: The list of reward signal names
|
|
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
|
|
of the hidden input.
|
|
:param num_layers: Number of hidden layers for value network
|
|
:param h_size: size of hidden layers for value network
|
|
:param scope: TF scope for value network.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
value_hidden = ModelUtils.create_vector_observation_encoder(
|
|
hidden_input, h_size, self.activ_fn, num_layers, "encoder", False
|
|
)
|
|
if self.use_recurrent:
|
|
value_hidden, memory_out = ModelUtils.create_recurrent_encoder(
|
|
value_hidden,
|
|
self.value_memory_in,
|
|
self.sequence_length_ph,
|
|
name="lstm_value",
|
|
)
|
|
self.value_memory_out = memory_out
|
|
self.create_value_heads(stream_names, value_hidden)
|
|
|
|
def create_q_heads(
|
|
self,
|
|
stream_names,
|
|
hidden_input,
|
|
num_layers,
|
|
h_size,
|
|
scope,
|
|
reuse=False,
|
|
num_outputs=1,
|
|
):
|
|
"""
|
|
Creates two q heads for each reward signal in stream_names.
|
|
Also creates the node corresponding to the mean of all the value heads in self.value.
|
|
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
|
|
:param stream_names: The list of reward signal names
|
|
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
|
|
of the hidden input.
|
|
:param num_layers: Number of hidden layers for Q network
|
|
:param h_size: size of hidden layers for Q network
|
|
:param scope: TF scope for Q network.
|
|
:param reuse: Whether or not to reuse variables. Useful for creating Q of policy.
|
|
:param num_outputs: Number of outputs of each Q function. If discrete, equal to number of actions.
|
|
"""
|
|
with tf.variable_scope(self.join_scopes(scope, "q1_encoding"), reuse=reuse):
|
|
q1_hidden = ModelUtils.create_vector_observation_encoder(
|
|
hidden_input, h_size, self.activ_fn, num_layers, "q1_encoder", reuse
|
|
)
|
|
if self.use_recurrent:
|
|
q1_hidden, memory_out = ModelUtils.create_recurrent_encoder(
|
|
q1_hidden,
|
|
self.q1_memory_in,
|
|
self.sequence_length_ph,
|
|
name="lstm_q1",
|
|
)
|
|
self.q1_memory_out = memory_out
|
|
|
|
q1_heads = {}
|
|
for name in stream_names:
|
|
_q1 = tf.layers.dense(q1_hidden, num_outputs, name="{}_q1".format(name))
|
|
q1_heads[name] = _q1
|
|
|
|
q1 = tf.reduce_mean(list(q1_heads.values()), axis=0)
|
|
with tf.variable_scope(self.join_scopes(scope, "q2_encoding"), reuse=reuse):
|
|
q2_hidden = ModelUtils.create_vector_observation_encoder(
|
|
hidden_input, h_size, self.activ_fn, num_layers, "q2_encoder", reuse
|
|
)
|
|
if self.use_recurrent:
|
|
q2_hidden, memory_out = ModelUtils.create_recurrent_encoder(
|
|
q2_hidden,
|
|
self.q2_memory_in,
|
|
self.sequence_length_ph,
|
|
name="lstm_q2",
|
|
)
|
|
self.q2_memory_out = memory_out
|
|
|
|
q2_heads = {}
|
|
for name in stream_names:
|
|
_q2 = tf.layers.dense(q2_hidden, num_outputs, name="{}_q2".format(name))
|
|
q2_heads[name] = _q2
|
|
|
|
q2 = tf.reduce_mean(list(q2_heads.values()), axis=0)
|
|
|
|
return q1_heads, q2_heads, q1, q2
|
|
|
|
|
|
class SACTargetNetwork(SACNetwork):
|
|
"""
|
|
Instantiation for the SAC target network. Only contains a single
|
|
value estimator and is updated from the Policy Network.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy,
|
|
m_size=None,
|
|
h_size=128,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
num_layers=2,
|
|
stream_names=None,
|
|
vis_encode_type=EncoderType.SIMPLE,
|
|
):
|
|
super().__init__(
|
|
policy,
|
|
m_size,
|
|
h_size,
|
|
normalize,
|
|
use_recurrent,
|
|
num_layers,
|
|
stream_names,
|
|
vis_encode_type,
|
|
)
|
|
with tf.variable_scope(TARGET_SCOPE):
|
|
self.vector_in, self.visual_in = ModelUtils.create_input_placeholders(
|
|
self.policy.behavior_spec.observation_shapes
|
|
)
|
|
if self.policy.normalize:
|
|
normalization_tensors = ModelUtils.create_normalizer(self.vector_in)
|
|
self.update_normalization_op = normalization_tensors.update_op
|
|
self.normalization_steps = normalization_tensors.steps
|
|
self.running_mean = normalization_tensors.running_mean
|
|
self.running_variance = normalization_tensors.running_variance
|
|
self.processed_vector_in = ModelUtils.normalize_vector_obs(
|
|
self.vector_in,
|
|
self.running_mean,
|
|
self.running_variance,
|
|
self.normalization_steps,
|
|
)
|
|
else:
|
|
self.processed_vector_in = self.vector_in
|
|
self.update_normalization_op = None
|
|
|
|
if self.policy.use_recurrent:
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, m_size], dtype=tf.float32, name="target_recurrent_in"
|
|
)
|
|
self.value_memory_in = self.memory_in
|
|
hidden_streams = ModelUtils.create_observation_streams(
|
|
self.visual_in,
|
|
self.processed_vector_in,
|
|
1,
|
|
self.h_size,
|
|
0,
|
|
vis_encode_type=vis_encode_type,
|
|
stream_scopes=["critic/value/"],
|
|
)
|
|
if self.policy.use_continuous_act:
|
|
self._create_cc_critic(hidden_streams[0], TARGET_SCOPE, create_qs=False)
|
|
else:
|
|
self._create_dc_critic(hidden_streams[0], TARGET_SCOPE, create_qs=False)
|
|
if self.use_recurrent:
|
|
self.memory_out = tf.concat(
|
|
self.value_memory_out, axis=1
|
|
) # Needed for Barracuda to work
|
|
|
|
def copy_normalization(self, mean, variance, steps):
|
|
"""
|
|
Copies the mean, variance, and steps into the normalizers of the
|
|
input of this SACNetwork. Used to copy the normalizer from the policy network
|
|
to the target network.
|
|
param mean: Tensor containing the mean.
|
|
param variance: Tensor containing the variance
|
|
param steps: Tensor containing the number of steps.
|
|
"""
|
|
update_mean = tf.assign(self.running_mean, mean)
|
|
update_variance = tf.assign(self.running_variance, variance)
|
|
update_norm_step = tf.assign(self.normalization_steps, steps)
|
|
return tf.group([update_mean, update_variance, update_norm_step])
|
|
|
|
|
|
class SACPolicyNetwork(SACNetwork):
|
|
"""
|
|
Instantiation for SAC policy network. Contains a dual Q estimator,
|
|
a value estimator, and a reference to the actual policy network.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy,
|
|
m_size=None,
|
|
h_size=128,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
num_layers=2,
|
|
stream_names=None,
|
|
vis_encode_type=EncoderType.SIMPLE,
|
|
):
|
|
super().__init__(
|
|
policy,
|
|
m_size,
|
|
h_size,
|
|
normalize,
|
|
use_recurrent,
|
|
num_layers,
|
|
stream_names,
|
|
vis_encode_type,
|
|
)
|
|
if self.policy.use_recurrent:
|
|
self._create_memory_ins(m_size)
|
|
|
|
hidden_critic = self._create_observation_in(vis_encode_type)
|
|
self.policy.output = self.policy.output
|
|
# Use the sequence length of the policy
|
|
self.sequence_length_ph = self.policy.sequence_length_ph
|
|
|
|
if self.policy.use_continuous_act:
|
|
self._create_cc_critic(hidden_critic, POLICY_SCOPE)
|
|
|
|
else:
|
|
self._create_dc_critic(hidden_critic, POLICY_SCOPE)
|
|
|
|
if self.use_recurrent:
|
|
mem_outs = [self.value_memory_out, self.q1_memory_out, self.q2_memory_out]
|
|
self.memory_out = tf.concat(mem_outs, axis=1)
|
|
|
|
def _create_memory_ins(self, m_size):
|
|
"""
|
|
Creates the memory input placeholders for LSTM.
|
|
:param m_size: the total size of the memory.
|
|
"""
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, m_size * 3], dtype=tf.float32, name="value_recurrent_in"
|
|
)
|
|
|
|
# Re-break-up for each network
|
|
num_mems = 3
|
|
input_size = self.memory_in.get_shape().as_list()[1]
|
|
mem_ins = []
|
|
for i in range(num_mems):
|
|
_start = input_size // num_mems * i
|
|
_end = input_size // num_mems * (i + 1)
|
|
mem_ins.append(self.memory_in[:, _start:_end])
|
|
self.value_memory_in = mem_ins[0]
|
|
self.q1_memory_in = mem_ins[1]
|
|
self.q2_memory_in = mem_ins[2]
|
|
|
|
def _create_observation_in(self, vis_encode_type):
|
|
"""
|
|
Creates the observation inputs, and a CNN if needed,
|
|
:param vis_encode_type: Type of CNN encoder.
|
|
:param share_ac_cnn: Whether or not to share the actor and critic CNNs.
|
|
:return A tuple of (hidden_policy, hidden_critic). We don't save it to self since they're used
|
|
once and thrown away.
|
|
"""
|
|
with tf.variable_scope(POLICY_SCOPE):
|
|
hidden_streams = ModelUtils.create_observation_streams(
|
|
self.policy.visual_in,
|
|
self.policy.processed_vector_in,
|
|
1,
|
|
self.h_size,
|
|
0,
|
|
vis_encode_type=vis_encode_type,
|
|
stream_scopes=["critic/value/"],
|
|
)
|
|
hidden_critic = hidden_streams[0]
|
|
return hidden_critic
|