Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

55 行
3.5 KiB

import tensorflow as tf
import tensorflow.contrib.layers as c_layers
from mlagents.trainers.models import LearningModel
class BehavioralCloningModel(LearningModel):
def __init__(self, brain, h_size=128, lr=1e-4, n_layers=2, m_size=128,
normalize=False, use_recurrent=False, seed=0):
LearningModel.__init__(self, m_size, normalize, use_recurrent, brain, seed)
num_streams = 1
hidden_streams = self.create_observation_streams(num_streams, h_size, n_layers)
hidden = hidden_streams[0]
self.dropout_rate = tf.placeholder(dtype=tf.float32, shape=[], name="dropout_rate")
hidden_reg = tf.layers.dropout(hidden, self.dropout_rate)
if self.use_recurrent:
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
hidden_reg, self.memory_out = self.create_recurrent_encoder(hidden_reg, self.memory_in,
self.sequence_length)
self.memory_out = tf.identity(self.memory_out, name='recurrent_out')
if brain.vector_action_space_type == "discrete":
policy_branches = []
for size in self.act_size:
policy_branches.append(
tf.layers.dense(
hidden,
size,
activation=None,
use_bias=False,
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01)))
self.action_probs = tf.concat(
[tf.nn.softmax(branch) for branch in policy_branches], axis=1, name="action_probs")
self.action_masks = tf.placeholder(shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks")
self.sample_action_float, normalized_logits = self.create_discrete_action_masking_layer(
tf.concat(policy_branches, axis=1), self.action_masks, self.act_size)
tf.identity(normalized_logits, name='action')
self.sample_action = tf.cast(self.sample_action_float, tf.int32)
self.true_action = tf.placeholder(shape=[None, len(policy_branches)], dtype=tf.int32, name="teacher_action")
self.action_oh = tf.concat([
tf.one_hot(self.true_action[:, i], self.act_size[i]) for i in range(len(self.act_size))], axis=1)
self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh)
self.action_percent = tf.reduce_mean(tf.cast(
tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32))
else:
self.policy = tf.layers.dense(hidden_reg, self.act_size[0], activation=None, use_bias=False, name='pre_action',
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))
self.clipped_sample_action = tf.clip_by_value(self.policy, -1, 1)
self.sample_action = tf.identity(self.clipped_sample_action, name="action")
self.true_action = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name="teacher_action")
self.clipped_true_action = tf.clip_by_value(self.true_action, -1, 1)
self.loss = tf.reduce_sum(tf.squared_difference(self.clipped_true_action, self.sample_action))
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
self.update = optimizer.minimize(self.loss)