您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
199 行
7.8 KiB
199 行
7.8 KiB
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from trainers.ppo_models import *
|
|
from trainers.trainer import UnityTrainerException, Trainer
|
|
|
|
logger = logging.getLogger("unityagents")
|
|
|
|
|
|
# This works only with PPO
|
|
class GhostTrainer(Trainer):
|
|
"""Keeps copies of a PPOTrainer past graphs and uses them to other Trainers."""
|
|
|
|
def __init__(self, sess, env, brain_name, trainer_parameters, training, seed):
|
|
"""
|
|
Responsible for saving and reusing past models.
|
|
:param sess: Tensorflow session.
|
|
:param env: The UnityEnvironment.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
"""
|
|
self.param_keys = ['brain_to_copy', 'is_ghost', 'new_model_freq', 'max_num_models']
|
|
for k in self.param_keys:
|
|
if k not in trainer_parameters:
|
|
raise UnityTrainerException("The hyperparameter {0} could not be found for the PPO trainer of "
|
|
"brain {1}.".format(k, brain_name))
|
|
|
|
super(GhostTrainer, self).__init__(sess, env, brain_name, trainer_parameters, training)
|
|
|
|
self.brain_to_copy = trainer_parameters['brain_to_copy']
|
|
self.variable_scope = trainer_parameters['graph_scope']
|
|
self.original_brain_parameters = trainer_parameters['original_brain_parameters']
|
|
self.new_model_freq = trainer_parameters['new_model_freq']
|
|
self.steps = 0
|
|
self.models = []
|
|
self.max_num_models = trainer_parameters['max_num_models']
|
|
self.last_model_replaced = 0
|
|
for i in range(self.max_num_models):
|
|
with tf.variable_scope(self.variable_scope + '_' + str(i)):
|
|
self.models += [create_agent_model(env.brains[self.brain_to_copy],
|
|
lr=float(self.original_brain_parameters['learning_rate']),
|
|
h_size=int(self.original_brain_parameters['hidden_units']),
|
|
epsilon=float(self.original_brain_parameters['epsilon']),
|
|
beta=float(self.original_brain_parameters['beta']),
|
|
max_step=float(self.original_brain_parameters['max_steps']),
|
|
normalize=self.original_brain_parameters['normalize'],
|
|
use_recurrent=self.original_brain_parameters['use_recurrent'],
|
|
num_layers=int(self.original_brain_parameters['num_layers']),
|
|
m_size=self.original_brain_parameters)]
|
|
self.model = self.models[0]
|
|
|
|
self.is_continuous = (env.brains[brain_name].action_space_type == "continuous")
|
|
self.use_observations = (env.brains[brain_name].number_observations > 0)
|
|
self.use_states = (env.brains[brain_name].state_space_size > 0)
|
|
self.use_recurrent = self.original_brain_parameters["use_recurrent"]
|
|
self.summary_path = trainer_parameters['summary_path']
|
|
|
|
def __str__(self):
|
|
return '''Hypermarameters for the Ghost Trainer of brain {0}: \n{1}'''.format(
|
|
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def graph_scope(self):
|
|
"""
|
|
Returns the graph scope of the trainer.
|
|
"""
|
|
return None
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return 1
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return 0
|
|
|
|
@property
|
|
def get_last_reward(self):
|
|
"""
|
|
Returns the last reward the trainer has had
|
|
:return: the new last reward
|
|
"""
|
|
return 0
|
|
|
|
def increment_step(self):
|
|
"""
|
|
Increment the step count of the trainer
|
|
"""
|
|
self.steps += 1
|
|
|
|
def update_last_reward(self):
|
|
"""
|
|
Updates the last reward
|
|
"""
|
|
return
|
|
|
|
def update_target_graph(self, from_scope, to_scope):
|
|
from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope)
|
|
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
|
|
op_holder = []
|
|
for from_var, to_var in zip(from_vars, to_vars):
|
|
op_holder.append(to_var.assign(from_var))
|
|
return op_holder
|
|
|
|
def take_action(self, info):
|
|
"""
|
|
Decides actions given state/observation information, and takes them in environment.
|
|
:param info: Current BrainInfo from environment.
|
|
:return: a tupple containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
|
|
epsi = None
|
|
info = info[self.brain_name]
|
|
feed_dict = {self.model.batch_size: len(info.states), self.model.sequence_length: 1}
|
|
run_list = [self.model.output]
|
|
if self.is_continuous:
|
|
epsi = np.random.randn(len(info.states), self.brain.action_space_size)
|
|
feed_dict[self.model.epsilon] = epsi
|
|
if self.use_observations:
|
|
for i, _ in enumerate(info.observations):
|
|
feed_dict[self.model.observation_in[i]] = info.observations[i]
|
|
if self.use_states:
|
|
feed_dict[self.model.state_in] = info.states
|
|
if self.use_recurrent:
|
|
feed_dict[self.model.memory_in] = info.memories
|
|
run_list += [self.model.memory_out]
|
|
if self.use_recurrent:
|
|
actions, memories = self.sess.run(run_list, feed_dict=feed_dict)
|
|
else:
|
|
actions = self.sess.run(run_list, feed_dict=feed_dict)
|
|
memories = None
|
|
return (actions, memories, None, None)
|
|
|
|
def add_experiences(self, info, next_info, take_action_outputs):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param info: Current BrainInfo.
|
|
:param next_info: Next BrainInfo.
|
|
:param take_action_outputs: The outputs of the take action method.
|
|
"""
|
|
return
|
|
|
|
def process_experiences(self, info):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param info: Current BrainInfo
|
|
"""
|
|
return
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. We must use another version of the graph.
|
|
"""
|
|
self.model = self.models[np.random.randint(0, self.max_num_models)]
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns wether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to wether or not update_model() can be run
|
|
"""
|
|
return self.steps % self.new_model_freq == 0
|
|
|
|
def update_model(self):
|
|
"""
|
|
Uses training_buffer to update model.
|
|
"""
|
|
self.last_model_replaced = (self.last_model_replaced + 1) % self.max_num_models
|
|
self.sess.run(self.update_target_graph(
|
|
self.original_brain_parameters['graph_scope'],
|
|
self.variable_scope + '_' + str(self.last_model_replaced))
|
|
)
|
|
return
|
|
|
|
def write_summary(self, lesson_number):
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
:param lesson_number: The lesson the trainer is at.
|
|
"""
|
|
return
|