Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

199 行
7.8 KiB

import logging
import os
import numpy as np
import tensorflow as tf
from trainers.ppo_models import *
from trainers.trainer import UnityTrainerException, Trainer
logger = logging.getLogger("unityagents")
# This works only with PPO
class GhostTrainer(Trainer):
"""Keeps copies of a PPOTrainer past graphs and uses them to other Trainers."""
def __init__(self, sess, env, brain_name, trainer_parameters, training, seed):
"""
Responsible for saving and reusing past models.
:param sess: Tensorflow session.
:param env: The UnityEnvironment.
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
"""
self.param_keys = ['brain_to_copy', 'is_ghost', 'new_model_freq', 'max_num_models']
for k in self.param_keys:
if k not in trainer_parameters:
raise UnityTrainerException("The hyperparameter {0} could not be found for the PPO trainer of "
"brain {1}.".format(k, brain_name))
super(GhostTrainer, self).__init__(sess, env, brain_name, trainer_parameters, training)
self.brain_to_copy = trainer_parameters['brain_to_copy']
self.variable_scope = trainer_parameters['graph_scope']
self.original_brain_parameters = trainer_parameters['original_brain_parameters']
self.new_model_freq = trainer_parameters['new_model_freq']
self.steps = 0
self.models = []
self.max_num_models = trainer_parameters['max_num_models']
self.last_model_replaced = 0
for i in range(self.max_num_models):
with tf.variable_scope(self.variable_scope + '_' + str(i)):
self.models += [create_agent_model(env.brains[self.brain_to_copy],
lr=float(self.original_brain_parameters['learning_rate']),
h_size=int(self.original_brain_parameters['hidden_units']),
epsilon=float(self.original_brain_parameters['epsilon']),
beta=float(self.original_brain_parameters['beta']),
max_step=float(self.original_brain_parameters['max_steps']),
normalize=self.original_brain_parameters['normalize'],
use_recurrent=self.original_brain_parameters['use_recurrent'],
num_layers=int(self.original_brain_parameters['num_layers']),
m_size=self.original_brain_parameters)]
self.model = self.models[0]
self.is_continuous = (env.brains[brain_name].action_space_type == "continuous")
self.use_observations = (env.brains[brain_name].number_observations > 0)
self.use_states = (env.brains[brain_name].state_space_size > 0)
self.use_recurrent = self.original_brain_parameters["use_recurrent"]
self.summary_path = trainer_parameters['summary_path']
def __str__(self):
return '''Hypermarameters for the Ghost Trainer of brain {0}: \n{1}'''.format(
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
@property
def parameters(self):
"""
Returns the trainer parameters of the trainer.
"""
return self.trainer_parameters
@property
def graph_scope(self):
"""
Returns the graph scope of the trainer.
"""
return None
@property
def get_max_steps(self):
"""
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
:return: The maximum number of steps of the trainer
"""
return 1
@property
def get_step(self):
"""
Returns the number of steps the trainer has performed
:return: the step count of the trainer
"""
return 0
@property
def get_last_reward(self):
"""
Returns the last reward the trainer has had
:return: the new last reward
"""
return 0
def increment_step(self):
"""
Increment the step count of the trainer
"""
self.steps += 1
def update_last_reward(self):
"""
Updates the last reward
"""
return
def update_target_graph(self, from_scope, to_scope):
from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope)
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
op_holder = []
for from_var, to_var in zip(from_vars, to_vars):
op_holder.append(to_var.assign(from_var))
return op_holder
def take_action(self, info):
"""
Decides actions given state/observation information, and takes them in environment.
:param info: Current BrainInfo from environment.
:return: a tupple containing action, memories, values and an object
to be passed to add experiences
"""
epsi = None
info = info[self.brain_name]
feed_dict = {self.model.batch_size: len(info.states), self.model.sequence_length: 1}
run_list = [self.model.output]
if self.is_continuous:
epsi = np.random.randn(len(info.states), self.brain.action_space_size)
feed_dict[self.model.epsilon] = epsi
if self.use_observations:
for i, _ in enumerate(info.observations):
feed_dict[self.model.observation_in[i]] = info.observations[i]
if self.use_states:
feed_dict[self.model.state_in] = info.states
if self.use_recurrent:
feed_dict[self.model.memory_in] = info.memories
run_list += [self.model.memory_out]
if self.use_recurrent:
actions, memories = self.sess.run(run_list, feed_dict=feed_dict)
else:
actions = self.sess.run(run_list, feed_dict=feed_dict)
memories = None
return (actions, memories, None, None)
def add_experiences(self, info, next_info, take_action_outputs):
"""
Adds experiences to each agent's experience history.
:param info: Current BrainInfo.
:param next_info: Next BrainInfo.
:param take_action_outputs: The outputs of the take action method.
"""
return
def process_experiences(self, info):
"""
Checks agent histories for processing condition, and processes them as necessary.
Processing involves calculating value and advantage targets for model updating step.
:param info: Current BrainInfo
"""
return
def end_episode(self):
"""
A signal that the Episode has ended. We must use another version of the graph.
"""
self.model = self.models[np.random.randint(0, self.max_num_models)]
def is_ready_update(self):
"""
Returns wether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
return self.steps % self.new_model_freq == 0
def update_model(self):
"""
Uses training_buffer to update model.
"""
self.last_model_replaced = (self.last_model_replaced + 1) % self.max_num_models
self.sess.run(self.update_target_graph(
self.original_brain_parameters['graph_scope'],
self.variable_scope + '_' + str(self.last_model_replaced))
)
return
def write_summary(self, lesson_number):
"""
Saves training statistics to Tensorboard.
:param lesson_number: The lesson the trainer is at.
"""
return