Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

204 行
10 KiB

import logging
from mlagents.trainers.ppo.models import PPOModel
from mlagents.trainers.policy import Policy
logger = logging.getLogger("mlagents.trainers")
class PPOPolicy(Policy):
def __init__(self, seed, brain, trainer_params, is_training, load):
"""
Policy for Proximal Policy Optimization Networks.
:param seed: Random seed.
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param is_training: Whether the model should be trained.
:param load: Whether a pre-trained model will be loaded or a new one created.
"""
super().__init__(seed, brain, trainer_params)
self.has_updated = False
self.use_curiosity = bool(trainer_params['use_curiosity'])
with self.graph.as_default():
self.model = PPOModel(brain,
lr=float(trainer_params['learning_rate']),
h_size=int(trainer_params['hidden_units']),
epsilon=float(trainer_params['epsilon']),
beta=float(trainer_params['beta']),
max_step=float(trainer_params['max_steps']),
normalize=trainer_params['normalize'],
use_recurrent=trainer_params['use_recurrent'],
num_layers=int(trainer_params['num_layers']),
m_size=self.m_size,
use_curiosity=bool(trainer_params['use_curiosity']),
curiosity_strength=float(trainer_params['curiosity_strength']),
curiosity_enc_size=float(trainer_params['curiosity_enc_size']),
seed=seed)
if load:
self._load_graph()
else:
self._initialize_graph()
self.inference_dict = {'action': self.model.output, 'log_probs': self.model.all_log_probs,
'value': self.model.value, 'entropy': self.model.entropy,
'learning_rate': self.model.learning_rate}
if self.use_continuous_act:
self.inference_dict['pre_action'] = self.model.output_pre
if self.use_recurrent:
self.inference_dict['memory_out'] = self.model.memory_out
if is_training and self.use_vec_obs and trainer_params['normalize']:
self.inference_dict['update_mean'] = self.model.update_mean
self.inference_dict['update_variance'] = self.model.update_variance
self.update_dict = {'value_loss': self.model.value_loss,
'policy_loss': self.model.policy_loss,
'update_batch': self.model.update_batch}
if self.use_curiosity:
self.update_dict['forward_loss'] = self.model.forward_loss
self.update_dict['inverse_loss'] = self.model.inverse_loss
def evaluate(self, brain_info):
"""
Evaluates policy for the agent experiences provided.
:param brain_info: BrainInfo object containing inputs.
:return: Outputs from network as defined by self.inference_dict.
"""
feed_dict = {self.model.batch_size: len(brain_info.vector_observations),
self.model.sequence_length: 1}
if self.use_recurrent:
if not self.use_continuous_act:
feed_dict[self.model.prev_action] = brain_info.previous_vector_actions.reshape(
[-1, len(self.model.act_size)])
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = brain_info.memories
feed_dict = self._fill_eval_dict(feed_dict, brain_info)
run_out = self._execute_model(feed_dict, self.inference_dict)
return run_out
def update(self, mini_batch, num_sequences):
"""
Updates model using buffer.
:param num_sequences: Number of trajectories in batch.
:param mini_batch: Experience batch.
:return: Output from update process.
"""
feed_dict = {self.model.batch_size: num_sequences,
self.model.sequence_length: self.sequence_length,
self.model.mask_input: mini_batch['masks'].flatten(),
self.model.returns_holder: mini_batch['discounted_returns'].flatten(),
self.model.old_value: mini_batch['value_estimates'].flatten(),
self.model.advantage: mini_batch['advantages'].reshape([-1, 1]),
self.model.all_old_log_probs: mini_batch['action_probs'].reshape(
[-1, sum(self.model.act_size)])}
if self.use_continuous_act:
feed_dict[self.model.output_pre] = mini_batch['actions_pre'].reshape(
[-1, self.model.act_size[0]])
else:
feed_dict[self.model.action_holder] = mini_batch['actions'].reshape(
[-1, len(self.model.act_size)])
if self.use_recurrent:
feed_dict[self.model.prev_action] = mini_batch['prev_action'].reshape(
[-1, len(self.model.act_size)])
feed_dict[self.model.action_masks] = mini_batch['action_mask'].reshape(
[-1, sum(self.brain.vector_action_space_size)])
if self.use_vec_obs:
feed_dict[self.model.vector_in] = mini_batch['vector_obs'].reshape(
[-1, self.vec_obs_size])
if self.use_curiosity:
feed_dict[self.model.next_vector_in] = mini_batch['next_vector_in'].reshape(
[-1, self.vec_obs_size])
if self.model.vis_obs_size > 0:
for i, _ in enumerate(self.model.visual_in):
_obs = mini_batch['visual_obs%d' % i]
if self.sequence_length > 1 and self.use_recurrent:
(_batch, _seq, _w, _h, _c) = _obs.shape
feed_dict[self.model.visual_in[i]] = _obs.reshape([-1, _w, _h, _c])
else:
feed_dict[self.model.visual_in[i]] = _obs
if self.use_curiosity:
for i, _ in enumerate(self.model.visual_in):
_obs = mini_batch['next_visual_obs%d' % i]
if self.sequence_length > 1 and self.use_recurrent:
(_batch, _seq, _w, _h, _c) = _obs.shape
feed_dict[self.model.next_visual_in[i]] = _obs.reshape([-1, _w, _h, _c])
else:
feed_dict[self.model.next_visual_in[i]] = _obs
if self.use_recurrent:
mem_in = mini_batch['memory'][:, 0, :]
feed_dict[self.model.memory_in] = mem_in
self.has_updated = True
run_out = self._execute_model(feed_dict, self.update_dict)
return run_out
def get_intrinsic_rewards(self, curr_info, next_info):
"""
Generates intrinsic reward used for Curiosity-based training.
:BrainInfo curr_info: Current BrainInfo.
:BrainInfo next_info: Next BrainInfo.
:return: Intrinsic rewards for all agents.
"""
if self.use_curiosity:
if len(curr_info.agents) == 0:
return []
feed_dict = {self.model.batch_size: len(next_info.vector_observations),
self.model.sequence_length: 1}
if self.use_continuous_act:
feed_dict[self.model.output] = next_info.previous_vector_actions
else:
feed_dict[self.model.action_holder] = next_info.previous_vector_actions
for i in range(self.model.vis_obs_size):
feed_dict[self.model.visual_in[i]] = curr_info.visual_observations[i]
feed_dict[self.model.next_visual_in[i]] = next_info.visual_observations[i]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = curr_info.vector_observations
feed_dict[self.model.next_vector_in] = next_info.vector_observations
if self.use_recurrent:
if curr_info.memories.shape[1] == 0:
curr_info.memories = self.make_empty_memory(len(curr_info.agents))
feed_dict[self.model.memory_in] = curr_info.memories
intrinsic_rewards = self.sess.run(self.model.intrinsic_reward,
feed_dict=feed_dict) * float(self.has_updated)
return intrinsic_rewards
else:
return None
def get_value_estimate(self, brain_info, idx):
"""
Generates value estimates for bootstrapping.
:param brain_info: BrainInfo to be used for bootstrapping.
:param idx: Index in BrainInfo of agent.
:return: Value estimate.
"""
feed_dict = {self.model.batch_size: 1, self.model.sequence_length: 1}
for i in range(len(brain_info.visual_observations)):
feed_dict[self.model.visual_in[i]] = [brain_info.visual_observations[i][idx]]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = [brain_info.vector_observations[idx]]
if self.use_recurrent:
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
if not self.use_continuous_act and self.use_recurrent:
feed_dict[self.model.prev_action] = brain_info.previous_vector_actions[idx].reshape(
[-1, len(self.model.act_size)])
value_estimate = self.sess.run(self.model.value, feed_dict)
return value_estimate
def get_last_reward(self):
"""
Returns the last reward the trainer has had
:return: the new last reward
"""
return self.sess.run(self.model.last_reward)
def update_reward(self, new_reward):
"""
Updates reward value for policy.
:param new_reward: New reward to save.
"""
self.sess.run(self.model.update_reward,
feed_dict={self.model.new_reward: new_reward})