您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
147 行
5.8 KiB
147 行
5.8 KiB
"""Contains the MetaCurriculum class."""
|
|
|
|
import os
|
|
from mlagents.trainers.curriculum import Curriculum
|
|
from mlagents.trainers.exception import MetaCurriculumError
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger('mlagents.trainers')
|
|
|
|
|
|
class MetaCurriculum(object):
|
|
"""A MetaCurriculum holds curriculums. Each curriculum is associated to a
|
|
particular brain in the environment.
|
|
"""
|
|
|
|
def __init__(self, curriculum_folder, default_reset_parameters):
|
|
"""Initializes a MetaCurriculum object.
|
|
|
|
Args:
|
|
curriculum_folder (str): The relative or absolute path of the
|
|
folder which holds the curriculums for this environment.
|
|
The folder should contain JSON files whose names are the
|
|
brains that the curriculums belong to.
|
|
default_reset_parameters (dict): The default reset parameters
|
|
of the environment.
|
|
"""
|
|
used_reset_parameters = set()
|
|
self._brains_to_curriculums = {}
|
|
|
|
try:
|
|
for curriculum_filename in os.listdir(curriculum_folder):
|
|
brain_name = curriculum_filename.split('.')[0]
|
|
curriculum_filepath = \
|
|
os.path.join(curriculum_folder, curriculum_filename)
|
|
curriculum = Curriculum(curriculum_filepath,
|
|
default_reset_parameters)
|
|
|
|
# Check if any two curriculums use the same reset params.
|
|
if any([(parameter in curriculum.get_config().keys())
|
|
for parameter in used_reset_parameters]):
|
|
logger.warning('Two or more curriculums will '
|
|
'attempt to change the same reset '
|
|
'parameter. The result will be '
|
|
'non-deterministic.')
|
|
|
|
used_reset_parameters.update(curriculum.get_config().keys())
|
|
self._brains_to_curriculums[brain_name] = curriculum
|
|
except NotADirectoryError:
|
|
raise MetaCurriculumError(curriculum_folder + ' is not a '
|
|
'directory. Refer to the ML-Agents '
|
|
'curriculum learning docs.')
|
|
|
|
|
|
@property
|
|
def brains_to_curriculums(self):
|
|
"""A dict from brain_name to the brain's curriculum."""
|
|
return self._brains_to_curriculums
|
|
|
|
@property
|
|
def lesson_nums(self):
|
|
"""A dict from brain name to the brain's curriculum's lesson number."""
|
|
lesson_nums = {}
|
|
for brain_name, curriculum in self.brains_to_curriculums.items():
|
|
lesson_nums[brain_name] = curriculum.lesson_num
|
|
|
|
return lesson_nums
|
|
|
|
@lesson_nums.setter
|
|
def lesson_nums(self, lesson_nums):
|
|
for brain_name, lesson in lesson_nums.items():
|
|
self.brains_to_curriculums[brain_name].lesson_num = lesson
|
|
|
|
def _lesson_ready_to_increment(self, brain_name, reward_buff_size):
|
|
"""Determines whether the curriculum of a specified brain is ready
|
|
to attempt an increment.
|
|
|
|
Args:
|
|
brain_name (str): The name of the brain whose curriculum will be
|
|
checked for readiness.
|
|
reward_buff_size (int): The size of the reward buffer of the trainer
|
|
that corresponds to the specified brain.
|
|
|
|
Returns:
|
|
Whether the curriculum of the specified brain should attempt to
|
|
increment its lesson.
|
|
"""
|
|
return reward_buff_size >= (self.brains_to_curriculums[brain_name]
|
|
.min_lesson_length)
|
|
|
|
def increment_lessons(self, measure_vals, reward_buff_sizes=None):
|
|
"""Attempts to increments all the lessons of all the curriculums in this
|
|
MetaCurriculum. Note that calling this method does not guarantee the
|
|
lesson of a curriculum will increment. The lesson of a curriculum will
|
|
only increment if the specified measure threshold defined in the
|
|
curriculum has been reached and the minimum number of episodes in the
|
|
lesson have been completed.
|
|
|
|
Args:
|
|
measure_vals (dict): A dict of brain name to measure value.
|
|
reward_buff_sizes (dict): A dict of brain names to the size of their
|
|
corresponding reward buffers.
|
|
|
|
Returns:
|
|
A dict from brain name to whether that brain's lesson number was
|
|
incremented.
|
|
"""
|
|
ret = {}
|
|
if reward_buff_sizes:
|
|
for brain_name, buff_size in reward_buff_sizes.items():
|
|
if self._lesson_ready_to_increment(brain_name, buff_size):
|
|
measure_val = measure_vals[brain_name]
|
|
ret[brain_name] = (self.brains_to_curriculums[brain_name]
|
|
.increment_lesson(measure_val))
|
|
else:
|
|
for brain_name, measure_val in measure_vals.items():
|
|
ret[brain_name] = (self.brains_to_curriculums[brain_name]
|
|
.increment_lesson(measure_val))
|
|
return ret
|
|
|
|
|
|
def set_all_curriculums_to_lesson_num(self, lesson_num):
|
|
"""Sets all the curriculums in this meta curriculum to a specified
|
|
lesson number.
|
|
|
|
Args:
|
|
lesson_num (int): The lesson number which all the curriculums will
|
|
be set to.
|
|
"""
|
|
for _, curriculum in self.brains_to_curriculums.items():
|
|
curriculum.lesson_num = lesson_num
|
|
|
|
|
|
def get_config(self):
|
|
"""Get the combined configuration of all curriculums in this
|
|
MetaCurriculum.
|
|
|
|
Returns:
|
|
A dict from parameter to value.
|
|
"""
|
|
config = {}
|
|
|
|
for _, curriculum in self.brains_to_curriculums.items():
|
|
curr_config = curriculum.get_config()
|
|
config.update(curr_config)
|
|
|
|
return config
|