Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

151 行
6.5 KiB

import numpy as np
import pathlib
import logging
from mlagents.trainers.buffer import Buffer
from mlagents.envs.brain import BrainParameters, BrainInfo
from mlagents.envs.utilities import process_pixels
from mlagents.envs.communicator_objects import *
from google.protobuf.internal.decoder import _DecodeVarint32
logger = logging.getLogger("mlagents.trainers")
def brain_param_proto_to_obj(brain_param_proto):
resolution = [{
"height": x.height,
"width": x.width,
"blackAndWhite": x.gray_scale
} for x in brain_param_proto.camera_resolutions]
brain_params = BrainParameters(brain_param_proto.brain_name, {
"vectorObservationSize": brain_param_proto.vector_observation_size,
"numStackedVectorObservations": brain_param_proto.num_stacked_vector_observations,
"cameraResolutions": resolution,
"vectorActionSize": brain_param_proto.vector_action_size,
"vectorActionDescriptions": brain_param_proto.vector_action_descriptions,
"vectorActionSpaceType": brain_param_proto.vector_action_space_type
})
return brain_params
def agent_info_proto_to_brain_info(agent_info, brain_params):
vis_obs = []
agent_info_list = [agent_info]
for i in range(brain_params.number_visual_observations):
obs = [process_pixels(x.visual_observations[i],
brain_params.camera_resolutions[i]['blackAndWhite'])
for x in agent_info_list]
vis_obs += [np.array(obs)]
if len(agent_info_list) == 0:
memory_size = 0
else:
memory_size = max([len(x.memories) for x in agent_info_list])
if memory_size == 0:
memory = np.zeros((0, 0))
else:
[x.memories.extend([0] * (memory_size - len(x.memories))) for x in agent_info_list]
memory = np.array([x.memories for x in agent_info_list])
total_num_actions = sum(brain_params.vector_action_space_size)
mask_actions = np.ones((len(agent_info_list), total_num_actions))
for agent_index, agent_info in enumerate(agent_info_list):
if agent_info.action_mask is not None:
if len(agent_info.action_mask) == total_num_actions:
mask_actions[agent_index, :] = [
0 if agent_info.action_mask[k] else 1 for k in range(total_num_actions)]
if any([np.isnan(x.reward) for x in agent_info_list]):
logger.warning("An agent had a NaN reward.")
if any([np.isnan(x.stacked_vector_observation).any() for x in agent_info_list]):
logger.warning("An agent had a NaN observation.")
brain_info = BrainInfo(
visual_observation=vis_obs,
vector_observation=np.nan_to_num(
np.array([x.stacked_vector_observation for x in agent_info_list])),
text_observations=[x.text_observation for x in agent_info_list],
memory=memory,
reward=[x.reward if not np.isnan(x.reward) else 0 for x in agent_info_list],
agents=[x.id for x in agent_info_list],
local_done=[x.done for x in agent_info_list],
vector_action=np.array([x.stored_vector_actions for x in agent_info_list]),
text_action=[x.stored_text_actions for x in agent_info_list],
max_reached=[x.max_step_reached for x in agent_info_list],
action_mask=mask_actions
)
return brain_info
def make_demo_buffer(brain_infos, brain_params, sequence_length):
# Create and populate buffer using experiences
demo_buffer = Buffer()
for idx, experience in enumerate(brain_infos):
if idx > len(brain_infos) - 2:
break
current_brain_info = brain_infos[idx]
next_brain_info = brain_infos[idx + 1]
demo_buffer[0].last_brain_info = current_brain_info
for i in range(brain_params.number_visual_observations):
demo_buffer[0]['visual_obs%d' % i] \
.append(current_brain_info.visual_observations[i][0])
if brain_params.vector_observation_space_size > 0:
demo_buffer[0]['vector_obs'] \
.append(current_brain_info.vector_observations[0])
demo_buffer[0]['actions'].append(next_brain_info.previous_vector_actions[0])
if next_brain_info.local_done[0]:
demo_buffer.append_update_buffer(0, batch_size=None,
training_length=sequence_length)
demo_buffer.reset_local_buffers()
demo_buffer.append_update_buffer(0, batch_size=None,
training_length=sequence_length)
return demo_buffer
def demo_to_buffer(file_path, sequence_length):
"""
Loads demonstration file and uses it to fill training buffer.
:param file_path: Location of demonstration file (.demo).
:param sequence_length: Length of trajectories to fill buffer.
:return:
"""
brain_params, brain_infos, _ = load_demonstration(file_path)
demo_buffer = make_demo_buffer(brain_infos, brain_params, sequence_length)
return brain_params, demo_buffer
def load_demonstration(file_path):
"""
Loads and parses a demonstration file.
:param file_path: Location of demonstration file (.demo).
:return: BrainParameter and list of BrainInfos containing demonstration data.
"""
INITIAL_POS = 33
file_extension = pathlib.Path(file_path).suffix
if file_extension != '.demo':
raise ValueError("The file is not a '.demo' file. Please provide a file with the "
"correct extension.")
brain_params = None
brain_infos = []
data = open(file_path, "rb").read()
next_pos, pos, obs_decoded = 0, 0, 0
total_expected = 0
while pos < len(data):
next_pos, pos = _DecodeVarint32(data, pos)
if obs_decoded == 0:
meta_data_proto = DemonstrationMetaProto()
meta_data_proto.ParseFromString(data[pos:pos + next_pos])
total_expected = meta_data_proto.number_steps
pos = INITIAL_POS
if obs_decoded == 1:
brain_param_proto = BrainParametersProto()
brain_param_proto.ParseFromString(data[pos:pos + next_pos])
brain_params = brain_param_proto_to_obj(brain_param_proto)
pos += next_pos
if obs_decoded > 1:
agent_info = AgentInfoProto()
agent_info.ParseFromString(data[pos:pos + next_pos])
brain_info = agent_info_proto_to_brain_info(agent_info, brain_params)
brain_infos.append(brain_info)
if len(brain_infos) == total_expected:
break
pos += next_pos
obs_decoded += 1
return brain_params, brain_infos, total_expected