Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

112 行
4.4 KiB

import os
import json
import math
from .exception import CurriculumError
import logging
logger = logging.getLogger('mlagents.trainers')
class Curriculum(object):
def __init__(self, location, default_reset_parameters):
"""
Initializes a Curriculum object.
:param location: Path to JSON defining curriculum.
:param default_reset_parameters: Set of reset parameters for
environment.
"""
self.max_lesson_num = 0
self.measure = None
self._lesson_num = 0
# The name of the brain should be the basename of the file without the
# extension.
self._brain_name = os.path.basename(location).split('.')[0]
try:
with open(location) as data_file:
self.data = json.load(data_file)
except IOError:
raise CurriculumError(
'The file {0} could not be found.'.format(location))
except UnicodeDecodeError:
raise CurriculumError('There was an error decoding {}'
.format(location))
self.smoothing_value = 0
for key in ['parameters', 'measure', 'thresholds',
'min_lesson_length', 'signal_smoothing']:
if key not in self.data:
raise CurriculumError("{0} does not contain a "
"{1} field."
.format(location, key))
self.smoothing_value = 0
self.measure = self.data['measure']
self.min_lesson_length = self.data['min_lesson_length']
self.max_lesson_num = len(self.data['thresholds'])
parameters = self.data['parameters']
for key in parameters:
if key not in default_reset_parameters:
raise CurriculumError(
'The parameter {0} in Curriculum {1} is not present in '
'the Environment'.format(key, location))
if len(parameters[key]) != self.max_lesson_num + 1:
raise CurriculumError(
'The parameter {0} in Curriculum {1} must have {2} values '
'but {3} were found'.format(key, location,
self.max_lesson_num + 1,
len(parameters[key])))
@property
def lesson_num(self):
return self._lesson_num
@lesson_num.setter
def lesson_num(self, lesson_num):
self._lesson_num = max(0, min(lesson_num, self.max_lesson_num))
def increment_lesson(self, measure_val):
"""
Increments the lesson number depending on the progress given.
:param measure_val: Measure of progress (either reward or percentage
steps completed).
:return Whether the lesson was incremented.
"""
if not self.data or not measure_val or math.isnan(measure_val):
return False
if self.data['signal_smoothing']:
measure_val = self.smoothing_value * 0.25 + 0.75 * measure_val
self.smoothing_value = measure_val
if self.lesson_num < self.max_lesson_num:
if measure_val > self.data['thresholds'][self.lesson_num]:
self.lesson_num += 1
config = {}
parameters = self.data['parameters']
for key in parameters:
config[key] = parameters[key][self.lesson_num]
logger.info('{0} lesson changed. Now in lesson {1}: {2}'
.format(self._brain_name,
self.lesson_num,
', '.join([str(x) + ' -> ' + str(config[x])
for x in config])))
return True
return False
def get_config(self, lesson=None):
"""
Returns reset parameters which correspond to the lesson.
:param lesson: The lesson you want to get the config of. If None, the
current lesson is returned.
:return: The configuration of the reset parameters.
"""
if not self.data:
return {}
if lesson is None:
lesson = self.lesson_num
lesson = max(0, min(lesson, self.max_lesson_num))
config = {}
parameters = self.data['parameters']
for key in parameters:
config[key] = parameters[key][lesson]
return config