Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

179 行
6.0 KiB

# # Unity ML-Agents Toolkit
from typing import Dict, List, Deque, Any
import abc
from collections import deque
from mlagents_envs.logging_util import get_logger
from mlagents.model_serialization import export_policy_model, SerializationSettings
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.policy import Policy
from mlagents.trainers.exception import UnityTrainerException
logger = get_logger(__name__)
class Trainer(abc.ABC):
"""This class is the base class for the mlagents_envs.trainers"""
def __init__(
self,
brain_name: str,
trainer_parameters: dict,
training: bool,
run_id: str,
reward_buff_cap: int = 1,
):
"""
Responsible for collecting experiences and training a neural network model.
:BrainParameters brain: Brain to be trained.
:dict trainer_parameters: The parameters for the trainer (dictionary).
:bool training: Whether the trainer is set for training.
:str run_id: The identifier of the current run
:int reward_buff_cap:
"""
self.param_keys: List[str] = []
self.brain_name = brain_name
self.run_id = run_id
self.trainer_parameters = trainer_parameters
self.summary_path = trainer_parameters["summary_path"]
self._stats_reporter = StatsReporter(self.summary_path)
self.is_training = training
self._reward_buffer: Deque[float] = deque(maxlen=reward_buff_cap)
self.policy_queues: List[AgentManagerQueue[Policy]] = []
self.trajectory_queues: List[AgentManagerQueue[Trajectory]] = []
self.step: int = 0
self.summary_freq = self.trainer_parameters["summary_freq"]
self.next_summary_step = self.summary_freq
@property
def stats_reporter(self):
"""
Returns the stats reporter associated with this Trainer.
"""
return self._stats_reporter
def _check_param_keys(self):
for k in self.param_keys:
if k not in self.trainer_parameters:
raise UnityTrainerException(
"The hyper-parameter {0} could not be found for the {1} trainer of "
"brain {2}.".format(k, self.__class__, self.brain_name)
)
@property
def parameters(self) -> Dict[str, Any]:
"""
Returns the trainer parameters of the trainer.
"""
return self.trainer_parameters
@property
def get_max_steps(self) -> int:
"""
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
:return: The maximum number of steps of the trainer
"""
return int(float(self.trainer_parameters["max_steps"]))
@property
def get_step(self) -> int:
"""
Returns the number of steps the trainer has performed
:return: the step count of the trainer
"""
return self.step
@property
def should_still_train(self) -> bool:
"""
Returns whether or not the trainer should train. A Trainer could
stop training if it wasn't training to begin with, or if max_steps
is reached.
"""
return self.is_training and self.get_step <= self.get_max_steps
@property
def reward_buffer(self) -> Deque[float]:
"""
Returns the reward buffer. The reward buffer contains the cumulative
rewards of the most recent episodes completed by agents using this
trainer.
:return: the reward buffer.
"""
return self._reward_buffer
def save_model(self, name_behavior_id: str) -> None:
"""
Saves the model
"""
self.get_policy(name_behavior_id).save_model(self.get_step)
def export_model(self, name_behavior_id: str) -> None:
"""
Exports the model
"""
policy = self.get_policy(name_behavior_id)
settings = SerializationSettings(policy.model_path, policy.brain.brain_name)
export_policy_model(settings, policy.graph, policy.sess)
@abc.abstractmethod
def end_episode(self):
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
pass
@abc.abstractmethod
def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
"""
Creates policy
"""
pass
@abc.abstractmethod
def add_policy(self, name_behavior_id: str, policy: TFPolicy) -> None:
"""
Adds policy to trainer.
"""
pass
@abc.abstractmethod
def get_policy(self, name_behavior_id: str) -> TFPolicy:
"""
Gets policy from trainer.
"""
pass
@abc.abstractmethod
def advance(self) -> None:
"""
Advances the trainer. Typically, this means grabbing trajectories
from all subscribed trajectory queues (self.trajectory_queues), and updating
a policy using the steps in them, and if needed pushing a new policy onto the right
policy queues (self.policy_queues).
"""
pass
def publish_policy_queue(self, policy_queue: AgentManagerQueue[Policy]) -> None:
"""
Adds a policy queue to the list of queues to publish to when this Trainer
makes a policy update
:param policy_queue: Policy queue to publish to.
"""
self.policy_queues.append(policy_queue)
def subscribe_trajectory_queue(
self, trajectory_queue: AgentManagerQueue[Trajectory]
) -> None:
"""
Adds a trajectory queue to the list of queues for the trainer to ingest Trajectories from.
:param trajectory_queue: Trajectory queue to read from.
"""
self.trajectory_queues.append(trajectory_queue)