Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

380 行
15 KiB

from collections import defaultdict
from enum import Enum
from typing import List, Dict, NamedTuple, Any
import numpy as np
import abc
import csv
import os
import time
from mlagents_envs.logging_util import get_logger
from mlagents_envs.timers import set_gauge
from mlagents.tf_utils import tf, generate_session_config
logger = get_logger(__name__)
class StatsSummary(NamedTuple):
mean: float
std: float
num: int
@staticmethod
def empty() -> "StatsSummary":
return StatsSummary(0.0, 0.0, 0)
class StatsPropertyType(Enum):
HYPERPARAMETERS = "hyperparameters"
SELF_PLAY = "selfplay"
SELF_PLAY_TEAM = "selfplayteam"
class StatsWriter(abc.ABC):
"""
A StatsWriter abstract class. A StatsWriter takes in a category, key, scalar value, and step
and writes it out by some method.
"""
@abc.abstractmethod
def write_stats(
self, category: str, values: Dict[str, StatsSummary], step: int
) -> None:
pass
def add_property(
self, category: str, property_type: StatsPropertyType, value: Any
) -> None:
"""
Add a generic property to the StatsWriter. This could be e.g. a Dict of hyperparameters,
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible
with all types of properties. For instance, a TB writer doesn't need a max step, nor should
we write hyperparameters to the CSV.
:param category: The category that the property belongs to.
:param type: The type of property.
:param value: The property itself.
"""
pass
class GaugeWriter(StatsWriter):
"""
Write all stats that we recieve to the timer gauges, so we can track them offline easily
"""
@staticmethod
def sanitize_string(s: str) -> str:
"""
Clean up special characters in the category and value names.
"""
return s.replace("/", ".").replace(" ", "")
def write_stats(
self, category: str, values: Dict[str, StatsSummary], step: int
) -> None:
for val, stats_summary in values.items():
set_gauge(
GaugeWriter.sanitize_string(f"{category}.{val}.mean"),
float(stats_summary.mean),
)
class ConsoleWriter(StatsWriter):
def __init__(self):
self.training_start_time = time.time()
# If self-play, we want to print ELO as well as reward
self.self_play = False
self.self_play_team = -1
def write_stats(
self, category: str, values: Dict[str, StatsSummary], step: int
) -> None:
is_training = "Not Training."
if "Is Training" in values:
stats_summary = stats_summary = values["Is Training"]
if stats_summary.mean > 0.0:
is_training = "Training."
if "Environment/Cumulative Reward" in values:
stats_summary = values["Environment/Cumulative Reward"]
logger.info(
"{}: Step: {}. "
"Time Elapsed: {:0.3f} s "
"Mean "
"Reward: {:0.3f}"
". Std of Reward: {:0.3f}. {}".format(
category,
step,
time.time() - self.training_start_time,
stats_summary.mean,
stats_summary.std,
is_training,
)
)
if self.self_play and "Self-play/ELO" in values:
elo_stats = values["Self-play/ELO"]
mean_opponent_elo = values["Self-play/Mean Opponent ELO"]
std_opponent_elo = values["Self-play/Std Opponent ELO"]
logger.info(
"{} Team {}: ELO: {:0.3f}. "
"Mean Opponent ELO: {:0.3f}. "
"Std Opponent ELO: {:0.3f}. ".format(
category,
self.self_play_team,
elo_stats.mean,
mean_opponent_elo.mean,
std_opponent_elo.mean,
)
)
else:
logger.info(
"{}: Step: {}. No episode was completed since last summary. {}".format(
category, step, is_training
)
)
def add_property(
self, category: str, property_type: StatsPropertyType, value: Any
) -> None:
if property_type == StatsPropertyType.HYPERPARAMETERS:
logger.info(
"""Hyperparameters for behavior name {0}: \n{1}""".format(
category, self._dict_to_str(value, 0)
)
)
elif property_type == StatsPropertyType.SELF_PLAY:
assert isinstance(value, bool)
self.self_play = value
elif property_type == StatsPropertyType.SELF_PLAY_TEAM:
assert isinstance(value, int)
self.self_play_team = value
def _dict_to_str(self, param_dict: Dict[str, Any], num_tabs: int) -> str:
"""
Takes a parameter dictionary and converts it to a human-readable string.
Recurses if there are multiple levels of dict. Used to print out hyperparameters.
param: param_dict: A Dictionary of key, value parameters.
return: A string version of this dictionary.
"""
if not isinstance(param_dict, dict):
return str(param_dict)
else:
append_newline = "\n" if num_tabs > 0 else ""
return append_newline + "\n".join(
[
"\t"
+ " " * num_tabs
+ "{0}:\t{1}".format(
x, self._dict_to_str(param_dict[x], num_tabs + 1)
)
for x in param_dict
]
)
class TensorboardWriter(StatsWriter):
def __init__(self, base_dir: str, clear_past_data: bool = False):
"""
A StatsWriter that writes to a Tensorboard summary.
:param base_dir: The directory within which to place all the summaries. Tensorboard files will be written to a
{base_dir}/{category} directory.
:param clear_past_data: Whether or not to clean up existing Tensorboard files associated with the base_dir and
category.
"""
self.summary_writers: Dict[str, tf.summary.FileWriter] = {}
self.base_dir: str = base_dir
self._clear_past_data = clear_past_data
def write_stats(
self, category: str, values: Dict[str, StatsSummary], step: int
) -> None:
self._maybe_create_summary_writer(category)
for key, value in values.items():
summary = tf.Summary()
summary.value.add(tag="{}".format(key), simple_value=value.mean)
self.summary_writers[category].add_summary(summary, step)
self.summary_writers[category].flush()
def _maybe_create_summary_writer(self, category: str) -> None:
if category not in self.summary_writers:
filewriter_dir = "{basedir}/{category}".format(
basedir=self.base_dir, category=category
)
os.makedirs(filewriter_dir, exist_ok=True)
if self._clear_past_data:
self._delete_all_events_files(filewriter_dir)
self.summary_writers[category] = tf.summary.FileWriter(filewriter_dir)
def _delete_all_events_files(self, directory_name: str) -> None:
for file_name in os.listdir(directory_name):
if file_name.startswith("events.out"):
logger.warning(
"{} was left over from a previous run. Deleting.".format(file_name)
)
full_fname = os.path.join(directory_name, file_name)
try:
os.remove(full_fname)
except OSError:
logger.warning(
"{} was left over from a previous run and "
"not deleted.".format(full_fname)
)
def add_property(
self, category: str, property_type: StatsPropertyType, value: Any
) -> None:
if property_type == StatsPropertyType.HYPERPARAMETERS:
assert isinstance(value, dict)
text = self._dict_to_tensorboard("Hyperparameters", value)
self._maybe_create_summary_writer(category)
self.summary_writers[category].add_summary(text, 0)
def _dict_to_tensorboard(self, name: str, input_dict: Dict[str, Any]) -> str:
"""
Convert a dict to a Tensorboard-encoded string.
:param name: The name of the text.
:param input_dict: A dictionary that will be displayed in a table on Tensorboard.
"""
try:
with tf.Session(config=generate_session_config()) as sess:
s_op = tf.summary.text(
name,
tf.convert_to_tensor(
([[str(x), str(input_dict[x])] for x in input_dict])
),
)
s = sess.run(s_op)
return s
except Exception:
logger.warning("Could not write text summary for Tensorboard.")
return ""
class CSVWriter(StatsWriter):
def __init__(self, base_dir: str, required_fields: List[str] = None):
"""
A StatsWriter that writes to a Tensorboard summary.
:param base_dir: The directory within which to place the CSV file, which will be {base_dir}/{category}.csv.
:param required_fields: If provided, the CSV writer won't write until these fields have statistics to write for
them.
"""
# We need to keep track of the fields in the CSV, as all rows need the same fields.
self.csv_fields: Dict[str, List[str]] = {}
self.required_fields = required_fields if required_fields else []
self.base_dir: str = base_dir
def write_stats(
self, category: str, values: Dict[str, StatsSummary], step: int
) -> None:
if self._maybe_create_csv_file(category, list(values.keys())):
row = [str(step)]
# Only record the stats that showed up in the first valid row
for key in self.csv_fields[category]:
_val = values.get(key, None)
row.append(str(_val.mean) if _val else "None")
with open(self._get_filepath(category), "a") as file:
writer = csv.writer(file)
writer.writerow(row)
def _maybe_create_csv_file(self, category: str, keys: List[str]) -> bool:
"""
If no CSV file exists and the keys have the required values,
make the CSV file and write hte title row.
Returns True if there is now (or already is) a valid CSV file.
"""
if category not in self.csv_fields:
summary_dir = self.base_dir
os.makedirs(summary_dir, exist_ok=True)
# Only store if the row contains the required fields
if all(item in keys for item in self.required_fields):
self.csv_fields[category] = keys
with open(self._get_filepath(category), "w") as file:
title_row = ["Steps"]
title_row.extend(keys)
writer = csv.writer(file)
writer.writerow(title_row)
return True
return False
return True
def _get_filepath(self, category: str) -> str:
file_dir = os.path.join(self.base_dir, category + ".csv")
return file_dir
class StatsReporter:
writers: List[StatsWriter] = []
stats_dict: Dict[str, Dict[str, List]] = defaultdict(lambda: defaultdict(list))
def __init__(self, category: str):
"""
Generic StatsReporter. A category is the broadest type of storage (would
correspond the run name and trainer name, e.g. 3DBalltest_3DBall. A key is the
type of stat it is (e.g. Environment/Reward). Finally the Value is the float value
attached to this stat.
"""
self.category: str = category
@staticmethod
def add_writer(writer: StatsWriter) -> None:
StatsReporter.writers.append(writer)
def add_property(self, property_type: StatsPropertyType, value: Any) -> None:
"""
Add a generic property to the StatsReporter. This could be e.g. a Dict of hyperparameters,
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible
with all types of properties. For instance, a TB writer doesn't need a max step, nor should
we write hyperparameters to the CSV.
:param key: The type of property.
:param value: The property itself.
"""
for writer in StatsReporter.writers:
writer.add_property(self.category, property_type, value)
def add_stat(self, key: str, value: float) -> None:
"""
Add a float value stat to the StatsReporter.
:param key: The type of statistic, e.g. Environment/Reward.
:param value: the value of the statistic.
"""
StatsReporter.stats_dict[self.category][key].append(value)
def set_stat(self, key: str, value: float) -> None:
"""
Sets a stat value to a float. This is for values that we don't want to average, and just
want the latest.
:param key: The type of statistic, e.g. Environment/Reward.
:param value: the value of the statistic.
"""
StatsReporter.stats_dict[self.category][key] = [value]
def write_stats(self, step: int) -> None:
"""
Write out all stored statistics that fall under the category specified.
The currently stored values will be averaged, written out as a single value,
and the buffer cleared.
:param step: Training step which to write these stats as.
"""
values: Dict[str, StatsSummary] = {}
for key in StatsReporter.stats_dict[self.category]:
if len(StatsReporter.stats_dict[self.category][key]) > 0:
stat_summary = self.get_stats_summaries(key)
values[key] = stat_summary
for writer in StatsReporter.writers:
writer.write_stats(self.category, values, step)
del StatsReporter.stats_dict[self.category]
def get_stats_summaries(self, key: str) -> StatsSummary:
"""
Get the mean, std, and count of a particular statistic, since last write.
:param key: The type of statistic, e.g. Environment/Reward.
:returns: A StatsSummary NamedTuple containing (mean, std, count).
"""
if len(StatsReporter.stats_dict[self.category][key]) > 0:
return StatsSummary(
mean=np.mean(StatsReporter.stats_dict[self.category][key]),
std=np.std(StatsReporter.stats_dict[self.category][key]),
num=len(StatsReporter.stats_dict[self.category][key]),
)
return StatsSummary.empty()