Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

207 行
7.4 KiB

using System.Collections.Generic;
using Barracuda;
using UnityEngine.Profiling;
using MLAgents.Sensors;
using MLAgents.Policies;
namespace MLAgents.Inference
{
internal struct AgentInfoSensorsPair
{
public AgentInfo agentInfo;
public List<ISensor> sensors;
}
internal class ModelRunner
{
List<AgentInfoSensorsPair> m_Infos = new List<AgentInfoSensorsPair>();
Dictionary<int, float[]> m_LastActionsReceived = new Dictionary<int, float[]>();
List<int> m_OrderedAgentsRequestingDecisions = new List<int>();
ITensorAllocator m_TensorAllocator;
TensorGenerator m_TensorGenerator;
TensorApplier m_TensorApplier;
NNModel m_Model;
InferenceDevice m_InferenceDevice;
IWorker m_Engine;
bool m_Verbose = false;
string[] m_OutputNames;
IReadOnlyList<TensorProxy> m_InferenceInputs;
IReadOnlyList<TensorProxy> m_InferenceOutputs;
Dictionary<int, List<float>> m_Memories = new Dictionary<int, List<float>>();
SensorShapeValidator m_SensorShapeValidator = new SensorShapeValidator();
bool m_VisualObservationsInitialized;
/// <summary>
/// Initializes the Brain with the Model that it will use when selecting actions for
/// the agents
/// </summary>
/// <param name="model"> The Barracuda model to load </param>
/// <param name="brainParameters"> The parameters of the Brain used to generate the
/// placeholder tensors </param>
/// <param name="inferenceDevice"> Inference execution device. CPU is the fastest
/// option for most of ML Agents models. </param>
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
/// and Multinomial objects used when running inference.</param>
/// <exception cref="UnityAgentsException">Throws an error when the model is null
/// </exception>
public ModelRunner(
NNModel model,
BrainParameters brainParameters,
InferenceDevice inferenceDevice = InferenceDevice.CPU,
int seed = 0)
{
Model barracudaModel;
m_Model = model;
m_InferenceDevice = inferenceDevice;
m_TensorAllocator = new TensorCachingAllocator();
if (model != null)
{
#if BARRACUDA_VERBOSE
m_Verbose = true;
#endif
D.logEnabled = m_Verbose;
barracudaModel = ModelLoader.Load(model);
var executionDevice = inferenceDevice == InferenceDevice.GPU
? WorkerFactory.Type.ComputePrecompiled
: WorkerFactory.Type.CSharp;
m_Engine = WorkerFactory.CreateWorker(executionDevice, barracudaModel, m_Verbose);
}
else
{
barracudaModel = null;
m_Engine = null;
}
m_InferenceInputs = BarracudaModelParamLoader.GetInputTensors(barracudaModel);
m_OutputNames = BarracudaModelParamLoader.GetOutputNames(barracudaModel);
m_TensorGenerator = new TensorGenerator(
seed, m_TensorAllocator, m_Memories, barracudaModel);
m_TensorApplier = new TensorApplier(
brainParameters, seed, m_TensorAllocator, m_Memories, barracudaModel);
}
static Dictionary<string, Tensor> PrepareBarracudaInputs(IEnumerable<TensorProxy> infInputs)
{
var inputs = new Dictionary<string, Tensor>();
foreach (var inp in infInputs)
{
inputs[inp.name] = inp.data;
}
return inputs;
}
public void Dispose()
{
if (m_Engine != null)
m_Engine.Dispose();
m_TensorAllocator?.Reset(false);
}
List<TensorProxy> FetchBarracudaOutputs(string[] names)
{
var outputs = new List<TensorProxy>();
foreach (var n in names)
{
var output = m_Engine.PeekOutput(n);
outputs.Add(TensorUtils.TensorProxyFromBarracuda(output, n));
}
return outputs;
}
public void PutObservations(AgentInfo info, List<ISensor> sensors)
{
#if DEBUG
m_SensorShapeValidator.ValidateSensors(sensors);
#endif
m_Infos.Add(new AgentInfoSensorsPair
{
agentInfo = info,
sensors = sensors
});
// We add the episodeId to this list to maintain the order in which the decisions were requested
m_OrderedAgentsRequestingDecisions.Add(info.episodeId);
if (!m_LastActionsReceived.ContainsKey(info.episodeId))
{
m_LastActionsReceived[info.episodeId] = null;
}
if (info.done)
{
// If the agent is done, we remove the key from the last action dictionary since no action
// should be taken.
m_LastActionsReceived.Remove(info.episodeId);
}
}
public void DecideBatch()
{
var currentBatchSize = m_Infos.Count;
if (currentBatchSize == 0)
{
return;
}
if (!m_VisualObservationsInitialized)
{
// Just grab the first agent in the collection (any will suffice, really).
// We check for an empty Collection above, so this will always return successfully.
var firstInfo = m_Infos[0];
m_TensorGenerator.InitializeObservations(firstInfo.sensors, m_TensorAllocator);
m_VisualObservationsInitialized = true;
}
Profiler.BeginSample("LearningBrain.DecideAction");
Profiler.BeginSample($"MLAgents.{m_Model.name}.GenerateTensors");
// Prepare the input tensors to be feed into the engine
m_TensorGenerator.GenerateTensors(m_InferenceInputs, currentBatchSize, m_Infos);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{m_Model.name}.PrepareBarracudaInputs");
var inputs = PrepareBarracudaInputs(m_InferenceInputs);
Profiler.EndSample();
// Execute the Model
Profiler.BeginSample($"MLAgents.{m_Model.name}.ExecuteGraph");
m_Engine.Execute(inputs);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{m_Model.name}.FetchBarracudaOutputs");
m_InferenceOutputs = FetchBarracudaOutputs(m_OutputNames);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{m_Model.name}.ApplyTensors");
// Update the outputs
m_TensorApplier.ApplyTensors(m_InferenceOutputs, m_OrderedAgentsRequestingDecisions, m_LastActionsReceived);
Profiler.EndSample();
Profiler.EndSample();
m_Infos.Clear();
m_OrderedAgentsRequestingDecisions.Clear();
}
public bool HasModel(NNModel other, InferenceDevice otherInferenceDevice)
{
return m_Model == other && m_InferenceDevice == otherInferenceDevice;
}
public float[] GetAction(int agentId)
{
if (m_LastActionsReceived.ContainsKey(agentId))
{
return m_LastActionsReceived[agentId];
}
return null;
}
}
}