Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

151 行
6.4 KiB

from typing import Any, Dict, List
import logging
import numpy as np
from mlagents.tf_utils import tf
from mlagents.trainers.components.reward_signals import RewardSignal, RewardSignalResult
from mlagents.trainers.tf_policy import TFPolicy
from .model import GAILModel
from mlagents.trainers.demo_loader import demo_to_buffer
LOGGER = logging.getLogger("mlagents.trainers")
class GAILRewardSignal(RewardSignal):
def __init__(
self,
policy: TFPolicy,
strength: float,
gamma: float,
demo_path: str,
encoding_size: int = 64,
learning_rate: float = 3e-4,
use_actions: bool = False,
use_vail: bool = False,
):
"""
The GAIL Reward signal generator. https://arxiv.org/abs/1606.03476
:param policy: The policy of the learning model
:param strength: The scaling parameter for the reward. The scaled reward will be the unscaled
reward multiplied by the strength parameter
:param gamma: The time discounting factor used for this reward.
:param demo_path: The path to the demonstration file
:param num_epoch: The number of epochs to train over the training buffer for the discriminator.
:param encoding_size: The size of the the hidden layers of the discriminator
:param learning_rate: The Learning Rate used during GAIL updates.
:param use_actions: Whether or not to use the actions for the discriminator.
:param use_vail: Whether or not to use a variational bottleneck for the discriminator.
See https://arxiv.org/abs/1810.00821.
"""
super().__init__(policy, strength, gamma)
self.use_terminal_states = False
self.model = GAILModel(
policy, 128, learning_rate, encoding_size, use_actions, use_vail
)
_, self.demonstration_buffer = demo_to_buffer(demo_path, policy.sequence_length)
self.has_updated = False
self.update_dict: Dict[str, tf.Tensor] = {
"gail_loss": self.model.loss,
"gail_update_batch": self.model.update_batch,
"gail_policy_estimate": self.model.mean_policy_estimate,
"gail_expert_estimate": self.model.mean_expert_estimate,
}
if self.model.use_vail:
self.update_dict["kl_loss"] = self.model.kl_loss
self.update_dict["z_log_sigma_sq"] = self.model.z_log_sigma_sq
self.update_dict["z_mean_expert"] = self.model.z_mean_expert
self.update_dict["z_mean_policy"] = self.model.z_mean_policy
self.update_dict["beta_update"] = self.model.update_beta
self.stats_name_to_update_name = {
"Losses/GAIL Loss": "gail_loss",
"Policy/GAIL Policy Estimate": "gail_policy_estimate",
"Policy/GAIL Expert Estimate": "gail_expert_estimate",
}
def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: len(mini_batch["actions"]),
self.policy.sequence_length_ph: self.policy.sequence_length,
}
if self.model.use_vail:
feed_dict[self.model.use_noise] = [0]
if self.policy.use_vec_obs:
feed_dict[self.policy.vector_in] = mini_batch["vector_obs"]
if self.policy.vis_obs_size > 0:
for i in range(len(self.policy.visual_in)):
_obs = mini_batch["visual_obs%d" % i]
feed_dict[self.policy.visual_in[i]] = _obs
if self.policy.use_continuous_act:
feed_dict[self.policy.selected_actions] = mini_batch["actions"]
else:
feed_dict[self.policy.action_holder] = mini_batch["actions"]
feed_dict[self.model.done_policy_holder] = np.array(
mini_batch["done"]
).flatten()
unscaled_reward = self.policy.sess.run(
self.model.intrinsic_reward, feed_dict=feed_dict
)
scaled_reward = unscaled_reward * float(self.has_updated) * self.strength
return RewardSignalResult(scaled_reward, unscaled_reward)
@classmethod
def check_config(
cls, config_dict: Dict[str, Any], param_keys: List[str] = None
) -> None:
"""
Checks the config and throw an exception if a hyperparameter is missing. GAIL requires strength and gamma
at minimum.
"""
param_keys = ["strength", "gamma", "demo_path"]
super().check_config(config_dict, param_keys)
def prepare_update(
self, policy: TFPolicy, mini_batch: Dict[str, np.ndarray], num_sequences: int
) -> Dict[tf.Tensor, Any]:
"""
Prepare inputs for update. .
:param mini_batch_demo: A mini batch of expert trajectories
:param mini_batch_policy: A mini batch of trajectories sampled from the current policy
:return: Feed_dict for update process.
"""
max_num_experiences = min(
len(mini_batch["actions"]), self.demonstration_buffer.num_experiences
)
# If num_sequences is less, we need to shorten the input batch.
for key, element in mini_batch.items():
mini_batch[key] = element[:max_num_experiences]
# Get batch from demo buffer
mini_batch_demo = self.demonstration_buffer.sample_mini_batch(
len(mini_batch["actions"]), 1
)
feed_dict: Dict[tf.Tensor, Any] = {
self.model.done_expert_holder: mini_batch_demo["done"],
self.model.done_policy_holder: mini_batch["done"],
}
if self.model.use_vail:
feed_dict[self.model.use_noise] = [1]
feed_dict[self.model.action_in_expert] = np.array(mini_batch_demo["actions"])
if self.policy.use_continuous_act:
feed_dict[policy.selected_actions] = mini_batch["actions"]
else:
feed_dict[policy.action_holder] = mini_batch["actions"]
if self.policy.use_vis_obs > 0:
for i in range(len(policy.visual_in)):
feed_dict[policy.visual_in[i]] = mini_batch["visual_obs%d" % i]
feed_dict[self.model.expert_visual_in[i]] = mini_batch_demo[
"visual_obs%d" % i
]
if self.policy.use_vec_obs:
feed_dict[policy.vector_in] = mini_batch["vector_obs"]
feed_dict[self.model.obs_in_expert] = mini_batch_demo["vector_obs"]
self.has_updated = True
return feed_dict