Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

167 行
6.4 KiB

from abc import ABC, abstractmethod
import numpy as np
from typing import List, Dict, NamedTuple, Iterable, Tuple
from mlagents_envs.base_env import (
DecisionSteps,
TerminalSteps,
BehaviorSpec,
BehaviorName,
ActionTuple,
)
from mlagents_envs.side_channel.stats_side_channel import EnvironmentStats
from mlagents.trainers.policy import Policy
from mlagents.trainers.agent_processor import AgentManager, AgentManagerQueue
from mlagents.trainers.action_info import ActionInfo
from mlagents_envs.logging_util import get_logger
from mlagents_envs.exception import UnityActionException
AllStepResult = Dict[BehaviorName, Tuple[DecisionSteps, TerminalSteps]]
AllGroupSpec = Dict[BehaviorName, BehaviorSpec]
logger = get_logger(__name__)
class EnvironmentStep(NamedTuple):
current_all_step_result: AllStepResult
worker_id: int
brain_name_to_action_info: Dict[BehaviorName, ActionInfo]
environment_stats: EnvironmentStats
@property
def name_behavior_ids(self) -> Iterable[BehaviorName]:
return self.current_all_step_result.keys()
@staticmethod
def empty(worker_id: int) -> "EnvironmentStep":
return EnvironmentStep({}, worker_id, {}, {})
class EnvManager(ABC):
def __init__(self):
self.policies: Dict[BehaviorName, Policy] = {}
self.agent_managers: Dict[BehaviorName, AgentManager] = {}
self.first_step_infos: List[EnvironmentStep] = []
def set_policy(self, brain_name: BehaviorName, policy: Policy) -> None:
self.policies[brain_name] = policy
if brain_name in self.agent_managers:
self.agent_managers[brain_name].policy = policy
def set_agent_manager(
self, brain_name: BehaviorName, manager: AgentManager
) -> None:
self.agent_managers[brain_name] = manager
@abstractmethod
def _step(self) -> List[EnvironmentStep]:
pass
@abstractmethod
def _reset_env(self, config: Dict = None) -> List[EnvironmentStep]:
pass
def reset(self, config: Dict = None) -> int:
for manager in self.agent_managers.values():
manager.end_episode()
# Save the first step infos, after the reset.
# They will be processed on the first advance().
self.first_step_infos = self._reset_env(config)
return len(self.first_step_infos)
@abstractmethod
def set_env_parameters(self, config: Dict = None) -> None:
"""
Sends environment parameter settings to C# via the
EnvironmentParametersSideChannel.
:param config: Dict of environment parameter keys and values
"""
pass
@property
@abstractmethod
def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]:
pass
@abstractmethod
def close(self):
pass
def get_steps(self) -> List[EnvironmentStep]:
"""
Updates the policies, steps the environments, and returns the step information from the environments.
Calling code should pass the returned EnvironmentSteps to process_steps() after calling this.
:return: The list of EnvironmentSteps
"""
# If we had just reset, process the first EnvironmentSteps.
# Note that we do it here instead of in reset() so that on the very first reset(),
# we can create the needed AgentManagers before calling advance() and processing the EnvironmentSteps.
if self.first_step_infos:
self._process_step_infos(self.first_step_infos)
self.first_step_infos = []
# Get new policies if found. Always get the latest policy.
for brain_name in self.agent_managers.keys():
_policy = None
try:
# We make sure to empty the policy queue before continuing to produce steps.
# This halts the trainers until the policy queue is empty.
while True:
_policy = self.agent_managers[brain_name].policy_queue.get_nowait()
except AgentManagerQueue.Empty:
if _policy is not None:
# policy_queue contains Policy, but we need a TFPolicy here
self.set_policy(brain_name, _policy) # type: ignore
# Step the environments
new_step_infos = self._step()
return new_step_infos
def process_steps(self, new_step_infos: List[EnvironmentStep]) -> int:
# Add to AgentProcessor
num_step_infos = self._process_step_infos(new_step_infos)
return num_step_infos
def _process_step_infos(self, step_infos: List[EnvironmentStep]) -> int:
for step_info in step_infos:
for name_behavior_id in step_info.name_behavior_ids:
if name_behavior_id not in self.agent_managers:
logger.warning(
"Agent manager was not created for behavior id {}.".format(
name_behavior_id
)
)
continue
decision_steps, terminal_steps = step_info.current_all_step_result[
name_behavior_id
]
self.agent_managers[name_behavior_id].add_experiences(
decision_steps,
terminal_steps,
step_info.worker_id,
step_info.brain_name_to_action_info.get(
name_behavior_id, ActionInfo.empty()
),
)
self.agent_managers[name_behavior_id].record_environment_stats(
step_info.environment_stats, step_info.worker_id
)
return len(step_infos)
@staticmethod
def action_tuple_from_numpy_dict(action_dict: Dict[str, np.ndarray]) -> ActionTuple:
if "continuous_action" in action_dict:
continuous = action_dict["continuous_action"]
if "discrete_action" in action_dict:
discrete = action_dict["discrete_action"]
action_tuple = ActionTuple(continuous, discrete)
else:
action_tuple = ActionTuple.create_continuous(continuous)
elif "discrete_action" in action_dict:
discrete = action_dict["discrete_action"]
action_tuple = ActionTuple.create_discrete(discrete)
else:
raise UnityActionException(
"The action dict must contain entries for either continuous_action or discrete_action."
)
return action_tuple