您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
115 行
4.6 KiB
115 行
4.6 KiB
from typing import Dict, Any, Optional, Tuple, List
|
|
import torch
|
|
import numpy as np
|
|
from mlagents_envs.base_env import DecisionSteps
|
|
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents.trainers.components.bc.module import BCModule
|
|
from mlagents.trainers.components.reward_signals.extrinsic.signal import (
|
|
ExtrinsicRewardSignal,
|
|
)
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.optimizer import Optimizer
|
|
from mlagents.trainers.trajectory import SplitObservations
|
|
|
|
|
|
class TorchOptimizer(Optimizer): # pylint: disable=W0223
|
|
def __init__(self, policy: TorchPolicy, trainer_params: Dict[str, Any]):
|
|
super(TorchOptimizer, self).__init__()
|
|
self.policy = policy
|
|
self.trainer_params = trainer_params
|
|
self.update_dict: Dict[str, torch.Tensor] = {}
|
|
self.value_heads: Dict[str, torch.Tensor] = {}
|
|
self.memory_in: torch.Tensor = None
|
|
self.memory_out: torch.Tensor = None
|
|
self.m_size: int = 0
|
|
self.global_step = torch.tensor(0)
|
|
self.bc_module: Optional[BCModule] = None
|
|
self.create_reward_signals(trainer_params["reward_signals"])
|
|
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
pass
|
|
|
|
def create_reward_signals(self, reward_signal_configs):
|
|
"""
|
|
Create reward signals
|
|
:param reward_signal_configs: Reward signal config.
|
|
"""
|
|
extrinsic_signal = ExtrinsicRewardSignal(
|
|
self.policy, **reward_signal_configs["extrinsic"]
|
|
)
|
|
self.reward_signals = {"extrinsic": extrinsic_signal}
|
|
# Create reward signals
|
|
# for reward_signal, config in reward_signal_configs.items():
|
|
# self.reward_signals[reward_signal] = create_reward_signal(
|
|
# self.policy, reward_signal, config
|
|
# )
|
|
# self.update_dict.update(self.reward_signals[reward_signal].update_dict)
|
|
|
|
def get_value_estimates(
|
|
self, decision_requests: DecisionSteps, idx: int, done: bool
|
|
) -> Dict[str, float]:
|
|
"""
|
|
Generates value estimates for bootstrapping.
|
|
:param decision_requests:
|
|
:param idx: Index in BrainInfo of agent.
|
|
:param done: Whether or not this is the last element of the episode,
|
|
in which case the value estimate will be 0.
|
|
:return: The value estimate dictionary with key being the name of the reward signal
|
|
and the value the corresponding value estimate.
|
|
"""
|
|
vec_vis_obs = SplitObservations.from_observations(decision_requests.obs)
|
|
|
|
value_estimates, mean_value = self.policy.actor_critic.critic_pass(
|
|
np.expand_dims(vec_vis_obs.vector_observations[idx], 0),
|
|
np.expand_dims(vec_vis_obs.visual_observations[idx], 0),
|
|
)
|
|
|
|
value_estimates = {k: float(v) for k, v in value_estimates.items()}
|
|
|
|
# If we're done, reassign all of the value estimates that need terminal states.
|
|
if done:
|
|
for k in value_estimates:
|
|
if self.reward_signals[k].use_terminal_states:
|
|
value_estimates[k] = 0.0
|
|
|
|
return value_estimates
|
|
|
|
def get_trajectory_value_estimates(
|
|
self, batch: AgentBuffer, next_obs: List[np.ndarray], done: bool
|
|
) -> Tuple[Dict[str, np.ndarray], Dict[str, float]]:
|
|
vector_obs = [torch.Tensor(np.array(batch["vector_obs"]))]
|
|
if self.policy.use_vis_obs:
|
|
visual_obs = []
|
|
for idx, _ in enumerate(
|
|
self.policy.actor_critic.network_body.visual_encoders
|
|
):
|
|
visual_ob = torch.Tensor(np.array(batch["visual_obs%d" % idx]))
|
|
visual_obs.append(visual_ob)
|
|
else:
|
|
visual_obs = []
|
|
|
|
memory = torch.zeros([1, len(vector_obs[0]), self.policy.m_size])
|
|
|
|
next_obs = np.concatenate(next_obs, axis=-1)
|
|
next_obs = [torch.Tensor(next_obs).unsqueeze(0)]
|
|
next_memory = torch.zeros([1, 1, self.policy.m_size])
|
|
|
|
value_estimates, mean_value = self.policy.actor_critic.critic_pass(
|
|
vector_obs, visual_obs, memory
|
|
)
|
|
|
|
next_value_estimate, next_value = self.policy.actor_critic.critic_pass(
|
|
next_obs, next_obs, next_memory
|
|
)
|
|
|
|
for name, estimate in value_estimates.items():
|
|
value_estimates[name] = estimate.detach().numpy()
|
|
next_value_estimate[name] = next_value_estimate[name].detach().numpy()
|
|
|
|
if done:
|
|
for k in next_value_estimate:
|
|
if self.reward_signals[k].use_terminal_states:
|
|
next_value_estimate[k] = 0.0
|
|
|
|
return value_estimates, next_value_estimate
|