您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
316 行
12 KiB
316 行
12 KiB
# # Unity ML-Agents Toolkit
|
|
import yaml
|
|
|
|
import os
|
|
import numpy as np
|
|
import json
|
|
|
|
from typing import Callable, Optional, List, Dict
|
|
|
|
import mlagents.trainers
|
|
import mlagents_envs
|
|
from mlagents import tf_utils
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.trainers.meta_curriculum import MetaCurriculum
|
|
from mlagents.trainers.trainer_util import TrainerFactory, handle_existing_directories
|
|
from mlagents.trainers.stats import (
|
|
TensorboardWriter,
|
|
CSVWriter,
|
|
StatsReporter,
|
|
GaugeWriter,
|
|
ConsoleWriter,
|
|
)
|
|
from mlagents.trainers.cli_utils import parser
|
|
from mlagents_envs.environment import UnityEnvironment
|
|
from mlagents.trainers.settings import RunOptions
|
|
from mlagents.trainers.training_status import GlobalTrainingStatus
|
|
from mlagents_envs.base_env import BaseEnv
|
|
from mlagents.trainers.subprocess_env_manager import SubprocessEnvManager
|
|
from mlagents_envs.side_channel.side_channel import SideChannel
|
|
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig
|
|
from mlagents_envs.timers import (
|
|
hierarchical_timer,
|
|
get_timer_tree,
|
|
add_metadata as add_timer_metadata,
|
|
)
|
|
from mlagents_envs import logging_util
|
|
|
|
logger = logging_util.get_logger(__name__)
|
|
|
|
TRAINING_STATUS_FILE_NAME = "training_status.json"
|
|
|
|
|
|
def get_version_string() -> str:
|
|
# pylint: disable=no-member
|
|
return f""" Version information:
|
|
ml-agents: {mlagents.trainers.__version__},
|
|
ml-agents-envs: {mlagents_envs.__version__},
|
|
Communicator API: {UnityEnvironment.API_VERSION},
|
|
TensorFlow: {tf_utils.tf.__version__}"""
|
|
|
|
|
|
def parse_command_line(argv: Optional[List[str]] = None) -> RunOptions:
|
|
args = parser.parse_args(argv)
|
|
return RunOptions.from_argparse(args)
|
|
|
|
|
|
def run_training(run_seed: int, options: RunOptions) -> None:
|
|
"""
|
|
Launches training session.
|
|
:param options: parsed command line arguments
|
|
:param run_seed: Random seed used for training.
|
|
:param run_options: Command line arguments for training.
|
|
"""
|
|
with hierarchical_timer("run_training.setup"):
|
|
checkpoint_settings = options.checkpoint_settings
|
|
env_settings = options.env_settings
|
|
engine_settings = options.engine_settings
|
|
base_path = "results"
|
|
write_path = os.path.join(base_path, checkpoint_settings.run_id)
|
|
maybe_init_path = (
|
|
os.path.join(base_path, checkpoint_settings.initialize_from)
|
|
if checkpoint_settings.initialize_from
|
|
else None
|
|
)
|
|
run_logs_dir = os.path.join(write_path, "run_logs")
|
|
port: Optional[int] = env_settings.base_port
|
|
# Check if directory exists
|
|
handle_existing_directories(
|
|
write_path,
|
|
checkpoint_settings.resume,
|
|
checkpoint_settings.force,
|
|
maybe_init_path,
|
|
)
|
|
# Make run logs directory
|
|
os.makedirs(run_logs_dir, exist_ok=True)
|
|
# Load any needed states
|
|
if checkpoint_settings.resume:
|
|
GlobalTrainingStatus.load_state(
|
|
os.path.join(run_logs_dir, "training_status.json")
|
|
)
|
|
# Configure CSV, Tensorboard Writers and StatsReporter
|
|
# We assume reward and episode length are needed in the CSV.
|
|
csv_writer = CSVWriter(
|
|
write_path,
|
|
required_fields=[
|
|
"Environment/Cumulative Reward",
|
|
"Environment/Episode Length",
|
|
],
|
|
)
|
|
tb_writer = TensorboardWriter(
|
|
write_path, clear_past_data=not checkpoint_settings.resume
|
|
)
|
|
gauge_write = GaugeWriter()
|
|
console_writer = ConsoleWriter()
|
|
StatsReporter.add_writer(tb_writer)
|
|
StatsReporter.add_writer(csv_writer)
|
|
StatsReporter.add_writer(gauge_write)
|
|
StatsReporter.add_writer(console_writer)
|
|
|
|
if env_settings.env_path is None:
|
|
port = None
|
|
env_factory = create_environment_factory(
|
|
env_settings.env_path,
|
|
engine_settings.no_graphics,
|
|
run_seed,
|
|
port,
|
|
env_settings.env_args,
|
|
os.path.abspath(run_logs_dir), # Unity environment requires absolute path
|
|
)
|
|
engine_config = EngineConfig(
|
|
width=engine_settings.width,
|
|
height=engine_settings.height,
|
|
quality_level=engine_settings.quality_level,
|
|
time_scale=engine_settings.time_scale,
|
|
target_frame_rate=engine_settings.target_frame_rate,
|
|
capture_frame_rate=engine_settings.capture_frame_rate,
|
|
)
|
|
env_manager = SubprocessEnvManager(
|
|
env_factory, engine_config, env_settings.num_envs
|
|
)
|
|
maybe_meta_curriculum = try_create_meta_curriculum(
|
|
options.curriculum, env_manager, restore=checkpoint_settings.resume
|
|
)
|
|
maybe_add_samplers(options.parameter_randomization, env_manager, run_seed)
|
|
trainer_factory = TrainerFactory(
|
|
options.behaviors,
|
|
write_path,
|
|
not checkpoint_settings.inference,
|
|
checkpoint_settings.resume,
|
|
run_seed,
|
|
maybe_init_path,
|
|
maybe_meta_curriculum,
|
|
False,
|
|
)
|
|
# Create controller and begin training.
|
|
tc = TrainerController(
|
|
trainer_factory,
|
|
write_path,
|
|
checkpoint_settings.run_id,
|
|
maybe_meta_curriculum,
|
|
not checkpoint_settings.inference,
|
|
run_seed,
|
|
)
|
|
|
|
# Begin training
|
|
try:
|
|
tc.start_learning(env_manager)
|
|
finally:
|
|
env_manager.close()
|
|
write_run_options(write_path, options)
|
|
write_timing_tree(run_logs_dir)
|
|
write_training_status(run_logs_dir)
|
|
|
|
|
|
def write_run_options(output_dir: str, run_options: RunOptions) -> None:
|
|
run_options_path = os.path.join(output_dir, "configuration.yaml")
|
|
try:
|
|
with open(run_options_path, "w") as f:
|
|
try:
|
|
yaml.dump(run_options.as_dict(), f, sort_keys=False)
|
|
except TypeError: # Older versions of pyyaml don't support sort_keys
|
|
yaml.dump(run_options.as_dict(), f)
|
|
except FileNotFoundError:
|
|
logger.warning(
|
|
f"Unable to save configuration to {run_options_path}. Make sure the directory exists"
|
|
)
|
|
|
|
|
|
def write_training_status(output_dir: str) -> None:
|
|
GlobalTrainingStatus.save_state(os.path.join(output_dir, TRAINING_STATUS_FILE_NAME))
|
|
|
|
|
|
def write_timing_tree(output_dir: str) -> None:
|
|
timing_path = os.path.join(output_dir, "timers.json")
|
|
try:
|
|
with open(timing_path, "w") as f:
|
|
json.dump(get_timer_tree(), f, indent=4)
|
|
except FileNotFoundError:
|
|
logger.warning(
|
|
f"Unable to save to {timing_path}. Make sure the directory exists"
|
|
)
|
|
|
|
|
|
def maybe_add_samplers(
|
|
sampler_config: Optional[Dict], env: SubprocessEnvManager, run_seed: int
|
|
) -> None:
|
|
"""
|
|
Adds samplers to env if sampler config provided and sets seed if not configured.
|
|
:param sampler_config: validated dict of sampler configs. None if not included.
|
|
:param env: env manager to pass samplers via reset
|
|
:param run_seed: Random seed used for training.
|
|
"""
|
|
if sampler_config is not None:
|
|
# If the seed is not specified in yaml, this will grab the run seed
|
|
for offset, v in enumerate(sampler_config.values()):
|
|
if v.seed == -1:
|
|
v.seed = run_seed + offset
|
|
env.reset(config=sampler_config)
|
|
|
|
|
|
def try_create_meta_curriculum(
|
|
curriculum_config: Optional[Dict], env: SubprocessEnvManager, restore: bool = False
|
|
) -> Optional[MetaCurriculum]:
|
|
if curriculum_config is None or len(curriculum_config) <= 0:
|
|
return None
|
|
else:
|
|
meta_curriculum = MetaCurriculum(curriculum_config)
|
|
if restore:
|
|
meta_curriculum.try_restore_all_curriculum()
|
|
return meta_curriculum
|
|
|
|
|
|
def create_environment_factory(
|
|
env_path: Optional[str],
|
|
no_graphics: bool,
|
|
seed: int,
|
|
start_port: Optional[int],
|
|
env_args: Optional[List[str]],
|
|
log_folder: str,
|
|
) -> Callable[[int, List[SideChannel]], BaseEnv]:
|
|
def create_unity_environment(
|
|
worker_id: int, side_channels: List[SideChannel]
|
|
) -> UnityEnvironment:
|
|
# Make sure that each environment gets a different seed
|
|
env_seed = seed + worker_id
|
|
return UnityEnvironment(
|
|
file_name=env_path,
|
|
worker_id=worker_id,
|
|
seed=env_seed,
|
|
no_graphics=no_graphics,
|
|
base_port=start_port,
|
|
additional_args=env_args,
|
|
side_channels=side_channels,
|
|
log_folder=log_folder,
|
|
)
|
|
|
|
return create_unity_environment
|
|
|
|
|
|
def run_cli(options: RunOptions) -> None:
|
|
try:
|
|
print(
|
|
"""
|
|
|
|
▄▄▄▓▓▓▓
|
|
╓▓▓▓▓▓▓█▓▓▓▓▓
|
|
,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌
|
|
▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄
|
|
▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌
|
|
▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌
|
|
▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓
|
|
^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓`
|
|
'▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌
|
|
▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀
|
|
`▀█▓▓▓▓▓▓▓▓▓▌
|
|
¬`▀▀▀█▓
|
|
|
|
"""
|
|
)
|
|
except Exception:
|
|
print("\n\n\tUnity Technologies\n")
|
|
print(get_version_string())
|
|
|
|
if options.debug:
|
|
log_level = logging_util.DEBUG
|
|
else:
|
|
log_level = logging_util.INFO
|
|
# disable noisy warnings from tensorflow
|
|
tf_utils.set_warnings_enabled(False)
|
|
|
|
logging_util.set_log_level(log_level)
|
|
|
|
logger.debug("Configuration for this run:")
|
|
logger.debug(json.dumps(options.as_dict(), indent=4))
|
|
|
|
# Options deprecation warnings
|
|
if options.checkpoint_settings.load_model:
|
|
logger.warning(
|
|
"The --load option has been deprecated. Please use the --resume option instead."
|
|
)
|
|
if options.checkpoint_settings.train_model:
|
|
logger.warning(
|
|
"The --train option has been deprecated. Train mode is now the default. Use "
|
|
"--inference to run in inference mode."
|
|
)
|
|
|
|
run_seed = options.env_settings.seed
|
|
|
|
# Add some timer metadata
|
|
add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
|
|
add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
|
|
add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
|
|
add_timer_metadata("tensorflow_version", tf_utils.tf.__version__)
|
|
|
|
if options.env_settings.seed == -1:
|
|
run_seed = np.random.randint(0, 10000)
|
|
run_training(run_seed, options)
|
|
|
|
|
|
def main():
|
|
run_cli(parse_command_line())
|
|
|
|
|
|
# For python debugger to directly run this script
|
|
if __name__ == "__main__":
|
|
main()
|