Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

141 行
5.7 KiB

import unittest.mock as mock
import pytest
import numpy as np
from mlagents.trainers.buffer import Buffer
def create_mock_brainparams(
number_visual_observations=0,
num_stacked_vector_observations=1,
vector_action_space_type="continuous",
vector_observation_space_size=3,
vector_action_space_size=None,
):
"""
Creates a mock BrainParameters object with parameters.
"""
# Avoid using mutable object as default param
if vector_action_space_size is None:
vector_action_space_size = [2]
mock_brain = mock.Mock()
mock_brain.return_value.number_visual_observations = number_visual_observations
mock_brain.return_value.num_stacked_vector_observations = (
num_stacked_vector_observations
)
mock_brain.return_value.vector_action_space_type = vector_action_space_type
mock_brain.return_value.vector_observation_space_size = (
vector_observation_space_size
)
camrez = {"blackAndWhite": False, "height": 84, "width": 84}
mock_brain.return_value.camera_resolutions = [camrez] * number_visual_observations
mock_brain.return_value.vector_action_space_size = vector_action_space_size
return mock_brain()
def create_mock_braininfo(
num_agents=1,
num_vector_observations=0,
num_vis_observations=0,
num_vector_acts=2,
discrete=False,
):
"""
Creates a mock BrainInfo with observations. Imitates constant
vector/visual observations, rewards, dones, and agents.
:int num_agents: Number of "agents" to imitate in your BrainInfo values.
:int num_vector_observations: Number of "observations" in your observation space
:int num_vis_observations: Number of "observations" in your observation space
:int num_vector_acts: Number of actions in your action space
:bool discrete: Whether or not action space is discrete
"""
mock_braininfo = mock.Mock()
mock_braininfo.return_value.visual_observations = num_vis_observations * [
np.ones((num_agents, 84, 84, 3))
]
mock_braininfo.return_value.vector_observations = np.array(
num_agents * [num_vector_observations * [1]]
)
if discrete:
mock_braininfo.return_value.previous_vector_actions = np.array(
num_agents * [1 * [0.5]]
)
mock_braininfo.return_value.action_masks = np.array(
num_agents * [num_vector_acts * [1.0]]
)
else:
mock_braininfo.return_value.previous_vector_actions = np.array(
num_agents * [num_vector_acts * [0.5]]
)
mock_braininfo.return_value.memories = np.ones((num_agents, 8))
mock_braininfo.return_value.rewards = num_agents * [1.0]
mock_braininfo.return_value.local_done = num_agents * [False]
mock_braininfo.return_value.text_observations = num_agents * [""]
mock_braininfo.return_value.agents = range(0, num_agents)
return mock_braininfo()
def setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo):
"""
Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock
BrainParameters and BrainInfo.
:Mock mock_env: A mock UnityEnvironment, usually empty.
:Mock mock_brain: A mock Brain object that specifies the params of this environment.
:Mock mock_braininfo: A mock BrainInfo object that will be returned at each step and reset.
"""
mock_env.return_value.academy_name = "MockAcademy"
mock_env.return_value.brains = {"MockBrain": mock_brain}
mock_env.return_value.external_brain_names = ["MockBrain"]
mock_env.return_value.brain_names = ["MockBrain"]
mock_env.return_value.reset.return_value = {"MockBrain": mock_braininfo}
mock_env.return_value.step.return_value = {"MockBrain": mock_braininfo}
def simulate_rollout(env, policy, buffer_init_samples):
brain_info_list = []
for i in range(buffer_init_samples):
brain_info_list.append(env.step()[env.brain_names[0]])
buffer = create_buffer(brain_info_list, policy.brain, policy.sequence_length)
return buffer
def create_buffer(brain_infos, brain_params, sequence_length):
buffer = Buffer()
# Make a buffer
for idx, experience in enumerate(brain_infos):
if idx > len(brain_infos) - 2:
break
current_brain_info = brain_infos[idx]
next_brain_info = brain_infos[idx + 1]
buffer[0].last_brain_info = current_brain_info
buffer[0]["done"].append(next_brain_info.local_done[0])
buffer[0]["rewards"].append(next_brain_info.rewards[0])
for i in range(brain_params.number_visual_observations):
buffer[0]["visual_obs%d" % i].append(
current_brain_info.visual_observations[i][0]
)
buffer[0]["next_visual_obs%d" % i].append(
current_brain_info.visual_observations[i][0]
)
if brain_params.vector_observation_space_size > 0:
buffer[0]["vector_obs"].append(current_brain_info.vector_observations[0])
buffer[0]["next_vector_in"].append(
current_brain_info.vector_observations[0]
)
buffer[0]["actions"].append(next_brain_info.previous_vector_actions[0])
buffer[0]["prev_action"].append(current_brain_info.previous_vector_actions[0])
buffer[0]["masks"].append(1.0)
buffer[0]["advantages"].append(1.0)
buffer[0]["action_probs"].append(np.ones(buffer[0]["actions"][0].shape))
buffer[0]["actions_pre"].append(np.ones(buffer[0]["actions"][0].shape))
buffer[0]["random_normal_epsilon"].append(
np.ones(buffer[0]["actions"][0].shape)
)
buffer[0]["action_mask"].append(np.ones(buffer[0]["actions"][0].shape))
buffer[0]["memory"].append(np.ones(8))
buffer.append_update_buffer(0, batch_size=None, training_length=sequence_length)
return buffer