Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

70 行
2.9 KiB

import unittest.mock as mock
import pytest
import numpy as np
from gym import spaces
from gym_unity.envs import UnityEnv, UnityGymException
from mock_communicator import MockCommunicator
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
def test_gym_wrapper(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0, stack=False, num_agents=1)
# Test for incorrect number of agents.
with pytest.raises(UnityGymException):
UnityEnv(' ', use_visual=False, multiagent=True)
env = UnityEnv(' ', use_visual=False)
assert isinstance(env, UnityEnv)
assert isinstance(env.reset(), np.ndarray)
actions = env.action_space.sample()
assert actions.shape[0] == 2
obs, rew, done, info = env.step(actions)
assert isinstance(obs, np.ndarray)
assert isinstance(rew, float)
assert isinstance(done, bool)
assert isinstance(info, dict)
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
def test_multi_agent(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0, stack=False, num_agents=2)
# Test for incorrect number of agents.
with pytest.raises(UnityGymException):
UnityEnv(' ', multiagent=False)
env = UnityEnv(' ', use_visual=False, multiagent=True)
assert isinstance(env.reset(), list)
actions = [env.action_space.sample() for i in range(env.number_agents)]
obs, rew, done, info = env.step(actions)
assert isinstance(obs, list)
assert isinstance(rew, list)
assert isinstance(done, list)
assert isinstance(info, dict)
@mock.patch('gym_unity.envs.unity_env.UnityEnvironment')
def test_branched_flatten(mock_env):
mock_env.return_value.academy_name = 'MockAcademy'
mock_brain = mock.Mock();
mock_brain.return_value.number_visual_observations = 0
mock_brain.return_value.num_stacked_vector_observations = 1
mock_brain.return_value.vector_action_space_type = 'discrete'
mock_brain.return_value.vector_observation_space_size = 1
# Unflattened action space
mock_brain.return_value.vector_action_space_size = [2,2,3]
mock_env.return_value.brains = {'MockBrain':mock_brain()}
mock_env.return_value.external_brain_names = ['MockBrain']
env = UnityEnv(' ', use_visual=False, multiagent=False, flatten_branched=True)
assert isinstance(env.action_space, spaces.Discrete)
assert env.action_space.n==12
assert env._flattener.lookup_action(0)==[0,0,0]
assert env._flattener.lookup_action(11)==[1,1,2]
# Check that False produces a MultiDiscrete
env = UnityEnv(' ', use_visual=False, multiagent=False, flatten_branched=False)
assert isinstance(env.action_space, spaces.MultiDiscrete)