您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
285 行
11 KiB
285 行
11 KiB
from mlagents.torch_utils import torch
|
|
from typing import Tuple, Optional, List
|
|
from mlagents.trainers.torch.layers import (
|
|
LinearEncoder,
|
|
Initialization,
|
|
linear_layer,
|
|
LayerNorm,
|
|
)
|
|
from mlagents.trainers.torch.model_serialization import exporting_to_onnx
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
|
|
|
|
def get_zero_entities_mask(entities: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
"""
|
|
Takes a List of Tensors and returns a List of mask Tensor with 1 if the input was
|
|
all zeros (on dimension 2) and 0 otherwise. This is used in the Attention
|
|
layer to mask the padding observations.
|
|
"""
|
|
with torch.no_grad():
|
|
|
|
if exporting_to_onnx.is_exporting():
|
|
# When exporting to ONNX, we want to transpose the entities. This is
|
|
# because ONNX only support input in NCHW (channel first) format.
|
|
# Barracuda also expect to get data in NCHW.
|
|
entities = [
|
|
torch.transpose(obs, 2, 1).reshape(
|
|
-1, int(obs.shape[1]), int(obs.shape[2])
|
|
)
|
|
for obs in entities
|
|
]
|
|
|
|
# Generate the masking tensors for each entities tensor (mask only if all zeros)
|
|
key_masks: List[torch.Tensor] = [
|
|
(torch.sum(ent ** 2, axis=2) < 0.01).float() for ent in entities
|
|
]
|
|
return key_masks
|
|
|
|
|
|
class MultiHeadAttention(torch.nn.Module):
|
|
|
|
NEG_INF = -1e6
|
|
|
|
def __init__(self, embedding_size: int, num_heads: int):
|
|
"""
|
|
Multi Head Attention module. We do not use the regular Torch implementation since
|
|
Barracuda does not support some operators it uses.
|
|
Takes as input to the forward method 3 tensors:
|
|
- query: of dimensions (batch_size, number_of_queries, embedding_size)
|
|
- key: of dimensions (batch_size, number_of_keys, embedding_size)
|
|
- value: of dimensions (batch_size, number_of_keys, embedding_size)
|
|
The forward method will return 2 tensors:
|
|
- The output: (batch_size, number_of_queries, embedding_size)
|
|
- The attention matrix: (batch_size, num_heads, number_of_queries, number_of_keys)
|
|
:param embedding_size: The size of the embeddings that will be generated (should be
|
|
dividable by the num_heads)
|
|
:param total_max_elements: The maximum total number of entities that can be passed to
|
|
the module
|
|
:param num_heads: The number of heads of the attention module
|
|
"""
|
|
super().__init__()
|
|
self.n_heads = num_heads
|
|
self.head_size: int = embedding_size // self.n_heads
|
|
self.embedding_size: int = self.head_size * self.n_heads
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
n_q: int,
|
|
n_k: int,
|
|
key_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
b = -1 # the batch size
|
|
|
|
query = query.reshape(
|
|
b, n_q, self.n_heads, self.head_size
|
|
) # (b, n_q, h, emb / h)
|
|
key = key.reshape(b, n_k, self.n_heads, self.head_size) # (b, n_k, h, emb / h)
|
|
value = value.reshape(
|
|
b, n_k, self.n_heads, self.head_size
|
|
) # (b, n_k, h, emb / h)
|
|
|
|
query = query.permute([0, 2, 1, 3]) # (b, h, n_q, emb / h)
|
|
# The next few lines are equivalent to : key.permute([0, 2, 3, 1])
|
|
# This is a hack, ONNX will compress two permute operations and
|
|
# Barracuda will not like seeing `permute([0,2,3,1])`
|
|
key = key.permute([0, 2, 1, 3]) # (b, h, emb / h, n_k)
|
|
key -= 1
|
|
key += 1
|
|
key = key.permute([0, 1, 3, 2]) # (b, h, emb / h, n_k)
|
|
|
|
qk = torch.matmul(query, key) # (b, h, n_q, n_k)
|
|
|
|
if key_mask is None:
|
|
qk = qk / (self.embedding_size ** 0.5)
|
|
else:
|
|
key_mask = key_mask.reshape(b, 1, 1, n_k)
|
|
qk = (1 - key_mask) * qk / (
|
|
self.embedding_size ** 0.5
|
|
) + key_mask * self.NEG_INF
|
|
|
|
att = torch.softmax(qk, dim=3) # (b, h, n_q, n_k)
|
|
|
|
value = value.permute([0, 2, 1, 3]) # (b, h, n_k, emb / h)
|
|
value_attention = torch.matmul(att, value) # (b, h, n_q, emb / h)
|
|
|
|
value_attention = value_attention.permute([0, 2, 1, 3]) # (b, n_q, h, emb / h)
|
|
value_attention = value_attention.reshape(
|
|
b, n_q, self.embedding_size
|
|
) # (b, n_q, emb)
|
|
|
|
return value_attention, att
|
|
|
|
|
|
class EntityEmbedding(torch.nn.Module):
|
|
"""
|
|
A module used to embed entities before passing them to a self-attention block.
|
|
Used in conjunction with ResidualSelfAttention to encode information about a self
|
|
and additional entities. Can also concatenate self to entities for ego-centric self-
|
|
attention. Inspired by architecture used in https://arxiv.org/pdf/1909.07528.pdf.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
entity_size: int,
|
|
entity_num_max_elements: Optional[int],
|
|
embedding_size: int,
|
|
):
|
|
"""
|
|
Constructs an EntityEmbedding module.
|
|
:param x_self_size: Size of "self" entity.
|
|
:param entity_size: Size of other entities.
|
|
:param entity_num_max_elements: Maximum elements for a given entity, None for unrestricted.
|
|
Needs to be assigned in order for model to be exportable to ONNX and Barracuda.
|
|
:param embedding_size: Embedding size for the entity encoder.
|
|
:param concat_self: Whether to concatenate x_self to entities. Set True for ego-centric
|
|
self-attention.
|
|
"""
|
|
super().__init__()
|
|
self.self_size: int = 0
|
|
self.entity_size: int = entity_size
|
|
self.entity_num_max_elements: int = -1
|
|
if entity_num_max_elements is not None:
|
|
self.entity_num_max_elements = entity_num_max_elements
|
|
self.embedding_size = embedding_size
|
|
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
|
|
self.self_ent_encoder = LinearEncoder(
|
|
self.entity_size,
|
|
1,
|
|
self.embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / self.embedding_size) ** 0.5,
|
|
)
|
|
|
|
def add_self_embedding(self, size: int) -> None:
|
|
self.self_size = size
|
|
self.self_ent_encoder = LinearEncoder(
|
|
self.self_size + self.entity_size,
|
|
1,
|
|
self.embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / self.embedding_size) ** 0.5,
|
|
)
|
|
|
|
def forward(self, x_self: torch.Tensor, entities: torch.Tensor) -> torch.Tensor:
|
|
num_entities = self.entity_num_max_elements
|
|
if num_entities < 0:
|
|
if exporting_to_onnx.is_exporting():
|
|
raise UnityTrainerException(
|
|
"Trying to export an attention mechanism that doesn't have a set max \
|
|
number of elements."
|
|
)
|
|
num_entities = entities.shape[1]
|
|
|
|
if exporting_to_onnx.is_exporting():
|
|
# When exporting to ONNX, we want to transpose the entities. This is
|
|
# because ONNX only support input in NCHW (channel first) format.
|
|
# Barracuda also expect to get data in NCHW.
|
|
entities = torch.transpose(entities, 2, 1).reshape(
|
|
-1, num_entities, self.entity_size
|
|
)
|
|
|
|
if self.self_size > 0:
|
|
expanded_self = x_self.reshape(-1, 1, self.self_size)
|
|
expanded_self = torch.cat([expanded_self] * num_entities, dim=1)
|
|
# Concatenate all observations with self
|
|
entities = torch.cat([expanded_self, entities], dim=2)
|
|
# Encode entities
|
|
encoded_entities = self.self_ent_encoder(entities)
|
|
return encoded_entities
|
|
|
|
|
|
class ResidualSelfAttention(torch.nn.Module):
|
|
"""
|
|
Residual self attentioninspired from https://arxiv.org/pdf/1909.07528.pdf. Can be used
|
|
with an EntityEmbedding module, to apply multi head self attention to encode information
|
|
about a "Self" and a list of relevant "Entities".
|
|
"""
|
|
|
|
EPSILON = 1e-7
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_size: int,
|
|
entity_num_max_elements: Optional[int] = None,
|
|
num_heads: int = 4,
|
|
):
|
|
"""
|
|
Constructs a ResidualSelfAttention module.
|
|
:param embedding_size: Embedding sizee for attention mechanism and
|
|
Q, K, V encoders.
|
|
:param entity_num_max_elements: A List of ints representing the maximum number
|
|
of elements in an entity sequence. Should be of length num_entities. Pass None to
|
|
not restrict the number of elements; however, this will make the module
|
|
unexportable to ONNX/Barracuda.
|
|
:param num_heads: Number of heads for Multi Head Self-Attention
|
|
"""
|
|
super().__init__()
|
|
self.max_num_ent: Optional[int] = None
|
|
if entity_num_max_elements is not None:
|
|
self.max_num_ent = entity_num_max_elements
|
|
|
|
self.attention = MultiHeadAttention(
|
|
num_heads=num_heads, embedding_size=embedding_size
|
|
)
|
|
|
|
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
|
|
self.fc_q = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_k = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_v = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_out = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.embedding_norm = LayerNorm()
|
|
self.residual_norm = LayerNorm()
|
|
|
|
def forward(self, inp: torch.Tensor, key_masks: List[torch.Tensor]) -> torch.Tensor:
|
|
# Gather the maximum number of entities information
|
|
mask = torch.cat(key_masks, dim=1)
|
|
|
|
inp = self.embedding_norm(inp)
|
|
# Feed to self attention
|
|
query = self.fc_q(inp) # (b, n_q, emb)
|
|
key = self.fc_k(inp) # (b, n_k, emb)
|
|
value = self.fc_v(inp) # (b, n_k, emb)
|
|
|
|
# Only use max num if provided
|
|
if self.max_num_ent is not None:
|
|
num_ent = self.max_num_ent
|
|
else:
|
|
num_ent = inp.shape[1]
|
|
if exporting_to_onnx.is_exporting():
|
|
raise UnityTrainerException(
|
|
"Trying to export an attention mechanism that doesn't have a set max \
|
|
number of elements."
|
|
)
|
|
|
|
output, _ = self.attention(query, key, value, num_ent, num_ent, mask)
|
|
# Residual
|
|
output = self.fc_out(output) + inp
|
|
output = self.residual_norm(output)
|
|
# Average Pooling
|
|
numerator = torch.sum(output * (1 - mask).reshape(-1, num_ent, 1), dim=1)
|
|
denominator = torch.sum(1 - mask, dim=1, keepdim=True) + self.EPSILON
|
|
output = numerator / denominator
|
|
return output
|