Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

126 行
4.2 KiB

import argparse
import numpy as np
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.engine_configuration_channel import (
EngineConfigurationChannel,
)
def test_run_environment(env_name):
"""
Run the low-level API test using the specified environment
:param env_name: Name of the Unity environment binary to launch
"""
engine_configuration_channel = EngineConfigurationChannel()
env = UnityEnvironment(
file_name=env_name,
side_channels=[engine_configuration_channel],
no_graphics=True,
additional_args=["-logFile", "-"],
)
try:
# Reset the environment
env.reset()
# Set the default brain to work with
group_name = env.get_behavior_names()[0]
group_spec = env.get_behavior_spec(group_name)
# Set the time scale of the engine
engine_configuration_channel.set_configuration_parameters(time_scale=3.0)
# Get the state of the agents
decision_steps, terminal_steps = env.get_steps(group_name)
# Examine the number of observations per Agent
print("Number of observations : ", len(group_spec.observation_shapes))
# Is there a visual observation ?
vis_obs = any(len(shape) == 3 for shape in group_spec.observation_shapes)
print("Is there a visual observation ?", vis_obs)
# Examine the state space for the first observation for the first agent
print(
"First Agent observation looks like: \n{}".format(decision_steps.obs[0][0])
)
for _episode in range(10):
env.reset()
decision_steps, terminal_steps = env.get_steps(group_name)
done = False
episode_rewards = 0
tracked_agent = -1
while not done:
if group_spec.is_action_continuous():
action = np.random.randn(
len(decision_steps), group_spec.action_size
)
elif group_spec.is_action_discrete():
branch_size = group_spec.discrete_action_branches
action = np.column_stack(
[
np.random.randint(
0, branch_size[i], size=(len(decision_steps))
)
for i in range(len(branch_size))
]
)
else:
# Should never happen
action = None
if tracked_agent == -1 and len(decision_steps) >= 1:
tracked_agent = decision_steps.agent_id[0]
env.set_actions(group_name, action)
env.step()
decision_steps, terminal_steps = env.get_steps(group_name)
done = False
if tracked_agent in decision_steps:
episode_rewards += decision_steps[tracked_agent].reward
if tracked_agent in terminal_steps:
episode_rewards += terminal_steps[tracked_agent].reward
done = True
print("Total reward this episode: {}".format(episode_rewards))
finally:
env.close()
def test_closing(env_name):
"""
Run the low-level API and close the environment
:param env_name: Name of the Unity environment binary to launch
"""
try:
env1 = UnityEnvironment(
file_name=env_name,
base_port=5006,
no_graphics=True,
additional_args=["-logFile", "-"],
)
env1.close()
env1 = UnityEnvironment(
file_name=env_name,
base_port=5006,
no_graphics=True,
additional_args=["-logFile", "-"],
)
env2 = UnityEnvironment(
file_name=env_name,
base_port=5007,
no_graphics=True,
additional_args=["-logFile", "-"],
)
env2.reset()
finally:
env1.close()
env2.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env", default="artifacts/testPlayer")
args = parser.parse_args()
test_run_environment(args.env)
test_closing(args.env)