您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
264 行
9.0 KiB
264 行
9.0 KiB
import pytest
|
|
from unittest import mock
|
|
import yaml
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
|
|
from mlagents.trainers.sac.trainer import SACTrainer
|
|
from mlagents.trainers.sac.optimizer import SACOptimizer
|
|
from mlagents.trainers.policy.nn_policy import NNPolicy
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.mock_brain import make_brain_parameters
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: sac
|
|
batch_size: 8
|
|
buffer_size: 10240
|
|
buffer_init_steps: 0
|
|
hidden_units: 32
|
|
init_entcoef: 0.1
|
|
learning_rate: 3.0e-4
|
|
max_steps: 1024
|
|
memory_size: 10
|
|
normalize: true
|
|
steps_per_update: 1
|
|
num_layers: 1
|
|
time_horizon: 64
|
|
sequence_length: 16
|
|
summary_freq: 1000
|
|
tau: 0.005
|
|
use_recurrent: false
|
|
curiosity_enc_size: 128
|
|
demo_path: None
|
|
vis_encode_type: simple
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_sac_optimizer_mock(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_brain = mb.setup_mock_brain(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = "testmodel"
|
|
trainer_parameters["output_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
trainer_parameters["use_recurrent"] = use_rnn
|
|
policy = NNPolicy(
|
|
0, mock_brain, trainer_parameters, False, False, create_tf_graph=False
|
|
)
|
|
optimizer = SACOptimizer(policy, trainer_parameters)
|
|
return optimizer
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_sac_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, optimizer.policy.brain)
|
|
# Mock out reward signal eval
|
|
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
def test_sac_update_reward_signals(dummy_config, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
# Add a Curiosity module
|
|
dummy_config["reward_signals"]["curiosity"] = {}
|
|
dummy_config["reward_signals"]["curiosity"]["strength"] = 1.0
|
|
dummy_config["reward_signals"]["curiosity"]["gamma"] = 0.99
|
|
dummy_config["reward_signals"]["curiosity"]["encoding_size"] = 128
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=False, use_discrete=discrete, use_visual=False
|
|
)
|
|
|
|
# Test update, while removing PPO-specific buffer elements.
|
|
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, optimizer.policy.brain)
|
|
|
|
# Mock out reward signal eval
|
|
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_rewards"] = update_buffer["environment_rewards"]
|
|
optimizer.update_reward_signals(
|
|
{"curiosity": update_buffer}, num_sequences=update_buffer.num_experiences
|
|
)
|
|
|
|
|
|
def test_sac_save_load_buffer(tmpdir, dummy_config):
|
|
mock_brain = mb.setup_mock_brain(
|
|
False,
|
|
False,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
trainer_params = dummy_config
|
|
trainer_params["output_path"] = str(tmpdir)
|
|
trainer_params["save_replay_buffer"] = True
|
|
trainer = SACTrainer(mock_brain.brain_name, 1, trainer_params, True, False, 0, 0)
|
|
policy = trainer.create_policy(mock_brain.brain_name, mock_brain)
|
|
trainer.add_policy(mock_brain.brain_name, policy)
|
|
|
|
trainer.update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
|
|
buffer_len = trainer.update_buffer.num_experiences
|
|
trainer.save_model(mock_brain.brain_name)
|
|
|
|
# Wipe Trainer and try to load
|
|
trainer2 = SACTrainer(mock_brain.brain_name, 1, trainer_params, True, True, 0, 0)
|
|
|
|
policy = trainer2.create_policy(mock_brain.brain_name, mock_brain)
|
|
trainer2.add_policy(mock_brain.brain_name, policy)
|
|
assert trainer2.update_buffer.num_experiences == buffer_len
|
|
|
|
|
|
@mock.patch("mlagents.trainers.sac.trainer.SACOptimizer")
|
|
def test_add_get_policy(sac_optimizer, dummy_config):
|
|
brain_params = make_brain_parameters(
|
|
discrete_action=False, visual_inputs=0, vec_obs_size=6
|
|
)
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
sac_optimizer.return_value = mock_optimizer
|
|
|
|
dummy_config["output_path"] = "./results/test_trainer_models/TestModel"
|
|
trainer = SACTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
|
|
policy = mock.Mock(spec=NNPolicy)
|
|
policy.get_current_step.return_value = 2000
|
|
|
|
trainer.add_policy(brain_params.brain_name, policy)
|
|
assert trainer.get_policy(brain_params.brain_name) == policy
|
|
|
|
# Make sure the summary steps were loaded properly
|
|
assert trainer.get_step == 2000
|
|
assert trainer.next_summary_step > 2000
|
|
|
|
# Test incorrect class of policy
|
|
policy = mock.Mock()
|
|
with pytest.raises(RuntimeError):
|
|
trainer.add_policy(brain_params, policy)
|
|
|
|
|
|
def test_advance(dummy_config):
|
|
brain_params = make_brain_parameters(
|
|
discrete_action=False, visual_inputs=0, vec_obs_size=6
|
|
)
|
|
dummy_config["output_path"] = "./results/test_trainer_models/TestModel"
|
|
dummy_config["steps_per_update"] = 20
|
|
trainer = SACTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
|
|
policy = trainer.create_policy(brain_params.brain_name, brain_params)
|
|
trainer.add_policy(brain_params.brain_name, policy)
|
|
|
|
trajectory_queue = AgentManagerQueue("testbrain")
|
|
policy_queue = AgentManagerQueue("testbrain")
|
|
trainer.subscribe_trajectory_queue(trajectory_queue)
|
|
trainer.publish_policy_queue(policy_queue)
|
|
|
|
trajectory = make_fake_trajectory(
|
|
length=15,
|
|
max_step_complete=True,
|
|
vec_obs_size=6,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that trainer put trajectory in update buffer
|
|
assert trainer.update_buffer.num_experiences == 15
|
|
|
|
# Check that the stats are being collected as episode isn't complete
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent > 0
|
|
|
|
# Add a terminal trajectory
|
|
trajectory = make_fake_trajectory(
|
|
length=6,
|
|
max_step_complete=False,
|
|
vec_obs_size=6,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that the stats are reset as episode is finished
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent == 0
|
|
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
|
|
# Assert we're not just using the default values
|
|
assert (
|
|
trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").mean > 0
|
|
)
|
|
|
|
# Make sure there is a policy on the queue
|
|
policy_queue.get_nowait()
|
|
|
|
# Add another trajectory. Since this is less than 20 steps total (enough for)
|
|
# two updates, there should NOT be a policy on the queue.
|
|
trajectory = make_fake_trajectory(
|
|
length=5,
|
|
max_step_complete=False,
|
|
vec_obs_size=6,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
with pytest.raises(AgentManagerQueue.Empty):
|
|
policy_queue.get_nowait()
|
|
|
|
|
|
def test_bad_config(dummy_config):
|
|
brain_params = make_brain_parameters(
|
|
discrete_action=False, visual_inputs=0, vec_obs_size=6
|
|
)
|
|
# Test that we throw an error if we have sequence length greater than batch size
|
|
dummy_config["sequence_length"] = 64
|
|
dummy_config["batch_size"] = 32
|
|
dummy_config["use_recurrent"] = True
|
|
dummy_config["output_path"] = "./results/test_trainer_models/TestModel"
|
|
with pytest.raises(UnityTrainerException):
|
|
_ = SACTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|