您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
211 行
7.9 KiB
211 行
7.9 KiB
from mlagents_envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
|
|
from mlagents_envs.exception import UnityObservationException
|
|
from mlagents_envs.timers import hierarchical_timer, timed
|
|
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
|
|
from mlagents_envs.communicator_objects.observation_pb2 import (
|
|
ObservationProto,
|
|
NONE as COMPRESSION_NONE,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
import logging
|
|
import numpy as np
|
|
import io
|
|
from typing import cast, List, Tuple, Union, Collection, Optional, Iterable
|
|
from PIL import Image
|
|
|
|
logger = logging.getLogger("mlagents_envs")
|
|
|
|
|
|
def agent_group_spec_from_proto(
|
|
brain_param_proto: BrainParametersProto, agent_info: AgentInfoProto
|
|
) -> AgentGroupSpec:
|
|
"""
|
|
Converts brain parameter and agent info proto to AgentGroupSpec object.
|
|
:param brain_param_proto: protobuf object.
|
|
:param agent_info: protobuf object.
|
|
:return: AgentGroupSpec object.
|
|
"""
|
|
observation_shape = [tuple(obs.shape) for obs in agent_info.observations]
|
|
action_type = (
|
|
ActionType.DISCRETE
|
|
if brain_param_proto.vector_action_space_type == 0
|
|
else ActionType.CONTINUOUS
|
|
)
|
|
if action_type == ActionType.CONTINUOUS:
|
|
action_shape: Union[
|
|
int, Tuple[int, ...]
|
|
] = brain_param_proto.vector_action_size[0]
|
|
else:
|
|
action_shape = tuple(brain_param_proto.vector_action_size)
|
|
return AgentGroupSpec(observation_shape, action_type, action_shape)
|
|
|
|
|
|
@timed
|
|
def process_pixels(image_bytes: bytes, gray_scale: bool) -> np.ndarray:
|
|
"""
|
|
Converts byte array observation image into numpy array, re-sizes it,
|
|
and optionally converts it to grey scale
|
|
:param gray_scale: Whether to convert the image to grayscale.
|
|
:param image_bytes: input byte array corresponding to image
|
|
:return: processed numpy array of observation from environment
|
|
"""
|
|
with hierarchical_timer("image_decompress"):
|
|
image_bytearray = bytearray(image_bytes)
|
|
image = Image.open(io.BytesIO(image_bytearray))
|
|
# Normally Image loads lazily, this forces it to do loading in the timer scope.
|
|
image.load()
|
|
s = np.array(image, dtype=np.float32) / 255.0
|
|
if gray_scale:
|
|
s = np.mean(s, axis=2)
|
|
s = np.reshape(s, [s.shape[0], s.shape[1], 1])
|
|
return s
|
|
|
|
|
|
@timed
|
|
def observation_to_np_array(
|
|
obs: ObservationProto, expected_shape: Optional[Iterable[int]] = None
|
|
) -> np.ndarray:
|
|
"""
|
|
Converts observation proto into numpy array of the appropriate size.
|
|
:param obs: observation proto to be converted
|
|
:param expected_shape: optional shape information, used for sanity checks.
|
|
:return: processed numpy array of observation from environment
|
|
"""
|
|
if expected_shape is not None:
|
|
if list(obs.shape) != list(expected_shape):
|
|
raise UnityObservationException(
|
|
f"Observation did not have the expected shape - got {obs.shape} but expected {expected_shape}"
|
|
)
|
|
gray_scale = obs.shape[2] == 1
|
|
if obs.compression_type == COMPRESSION_NONE:
|
|
img = np.array(obs.float_data.data, dtype=np.float32)
|
|
img = np.reshape(img, obs.shape)
|
|
return img
|
|
else:
|
|
img = process_pixels(obs.compressed_data, gray_scale)
|
|
# Compare decompressed image size to observation shape and make sure they match
|
|
if list(obs.shape) != list(img.shape):
|
|
raise UnityObservationException(
|
|
f"Decompressed observation did not have the expected shape - "
|
|
f"decompressed had {img.shape} but expected {obs.shape}"
|
|
)
|
|
return img
|
|
|
|
|
|
@timed
|
|
def _process_visual_observation(
|
|
obs_index: int,
|
|
shape: Tuple[int, int, int],
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
) -> np.ndarray:
|
|
if len(agent_info_list) == 0:
|
|
return np.zeros((0, shape[0], shape[1], shape[2]), dtype=np.float32)
|
|
|
|
batched_visual = [
|
|
observation_to_np_array(agent_obs.observations[obs_index], shape)
|
|
for agent_obs in agent_info_list
|
|
]
|
|
return np.array(batched_visual, dtype=np.float32)
|
|
|
|
|
|
def _raise_on_nan_and_inf(data: np.array, source: str) -> np.array:
|
|
# Check for NaNs or Infinite values in the observation or reward data.
|
|
# If there's a NaN in the observations, the np.mean() result will be NaN
|
|
# If there's an Infinite value (either sign) then the result will be Inf
|
|
# See https://stackoverflow.com/questions/6736590/fast-check-for-nan-in-numpy for background
|
|
# Note that a very large values (larger than sqrt(float_max)) will result in an Inf value here
|
|
# Raise a Runtime error in the case that NaNs or Infinite values make it into the data.
|
|
if data.size == 0:
|
|
return data
|
|
|
|
d = np.mean(data)
|
|
has_nan = np.isnan(d)
|
|
has_inf = not np.isfinite(d)
|
|
|
|
if has_nan:
|
|
raise RuntimeError(f"The {source} provided had NaN values.")
|
|
if has_inf:
|
|
raise RuntimeError(f"The {source} provided had Infinite values.")
|
|
|
|
|
|
@timed
|
|
def _process_vector_observation(
|
|
obs_index: int,
|
|
shape: Tuple[int, ...],
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
) -> np.ndarray:
|
|
if len(agent_info_list) == 0:
|
|
return np.zeros((0, shape[0]), dtype=np.float32)
|
|
np_obs = np.array(
|
|
[
|
|
agent_obs.observations[obs_index].float_data.data
|
|
for agent_obs in agent_info_list
|
|
],
|
|
dtype=np.float32,
|
|
)
|
|
_raise_on_nan_and_inf(np_obs, "observations")
|
|
return np_obs
|
|
|
|
|
|
@timed
|
|
def batched_step_result_from_proto(
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
group_spec: AgentGroupSpec,
|
|
) -> BatchedStepResult:
|
|
obs_list: List[np.ndarray] = []
|
|
for obs_index, obs_shape in enumerate(group_spec.observation_shapes):
|
|
is_visual = len(obs_shape) == 3
|
|
if is_visual:
|
|
obs_shape = cast(Tuple[int, int, int], obs_shape)
|
|
obs_list.append(
|
|
_process_visual_observation(obs_index, obs_shape, agent_info_list)
|
|
)
|
|
else:
|
|
obs_list.append(
|
|
_process_vector_observation(obs_index, obs_shape, agent_info_list)
|
|
)
|
|
rewards = np.array(
|
|
[agent_info.reward for agent_info in agent_info_list], dtype=np.float32
|
|
)
|
|
|
|
_raise_on_nan_and_inf(rewards, "rewards")
|
|
|
|
done = np.array([agent_info.done for agent_info in agent_info_list], dtype=np.bool)
|
|
max_step = np.array(
|
|
[agent_info.max_step_reached for agent_info in agent_info_list], dtype=np.bool
|
|
)
|
|
agent_id = np.array(
|
|
[agent_info.id for agent_info in agent_info_list], dtype=np.int32
|
|
)
|
|
action_mask = None
|
|
if group_spec.is_action_discrete():
|
|
if any([agent_info.action_mask is not None] for agent_info in agent_info_list):
|
|
n_agents = len(agent_info_list)
|
|
a_size = np.sum(group_spec.discrete_action_branches)
|
|
mask_matrix = np.ones((n_agents, a_size), dtype=np.bool)
|
|
for agent_index, agent_info in enumerate(agent_info_list):
|
|
if agent_info.action_mask is not None:
|
|
if len(agent_info.action_mask) == a_size:
|
|
mask_matrix[agent_index, :] = [
|
|
False if agent_info.action_mask[k] else True
|
|
for k in range(a_size)
|
|
]
|
|
action_mask = (1 - mask_matrix).astype(np.bool)
|
|
indices = _generate_split_indices(group_spec.discrete_action_branches)
|
|
action_mask = np.split(action_mask, indices, axis=1)
|
|
return BatchedStepResult(obs_list, rewards, done, max_step, agent_id, action_mask)
|
|
|
|
|
|
def _generate_split_indices(dims):
|
|
if len(dims) <= 1:
|
|
return ()
|
|
result = (dims[0],)
|
|
for i in range(len(dims) - 2):
|
|
result += (dims[i + 1] + result[i],)
|
|
return result
|