Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

36 行
1.4 KiB

import logging
from typing import Optional
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
logger = logging.getLogger("mlagents_envs")
class Communicator(object):
def __init__(self, worker_id=0, base_port=5005):
"""
Python side of the communication. Must be used in pair with the right Unity Communicator equivalent.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
"""
def initialize(self, inputs: UnityInputProto) -> UnityOutputProto:
"""
Used to exchange initialization parameters between Python and the Environment
:param inputs: The initialization input that will be sent to the environment.
:return: UnityOutput: The initialization output sent by Unity
"""
def exchange(self, inputs: UnityInputProto) -> Optional[UnityOutputProto]:
"""
Used to send an input and receive an output from the Environment
:param inputs: The UnityInput that needs to be sent the Environment
:return: The UnityOutputs generated by the Environment
"""
def close(self):
"""
Sends a shutdown signal to the unity environment, and closes the connection.
"""