您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
142 行
5.3 KiB
142 行
5.3 KiB
import logging
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
from mlagents.trainers.models import LearningModel, EncoderType
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class PPOModel(LearningModel):
|
|
def __init__(
|
|
self,
|
|
brain,
|
|
lr=1e-4,
|
|
h_size=128,
|
|
epsilon=0.2,
|
|
beta=1e-3,
|
|
max_step=5e6,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
num_layers=2,
|
|
m_size=None,
|
|
seed=0,
|
|
stream_names=None,
|
|
vis_encode_type=EncoderType.SIMPLE,
|
|
):
|
|
"""
|
|
Takes a Unity environment and model-specific hyper-parameters and returns the
|
|
appropriate PPO agent model for the environment.
|
|
:param brain: BrainInfo used to generate specific network graph.
|
|
:param lr: Learning rate.
|
|
:param h_size: Size of hidden layers
|
|
:param epsilon: Value for policy-divergence threshold.
|
|
:param beta: Strength of entropy regularization.
|
|
:param max_step: Total number of training steps.
|
|
:param normalize: Whether to normalize vector observation input.
|
|
:param use_recurrent: Whether to use an LSTM layer in the network.
|
|
:param num_layers Number of hidden layers between encoded input and policy & value layers
|
|
:param m_size: Size of brain memory.
|
|
:param seed: Seed to use for initialization of model.
|
|
:param stream_names: List of names of value streams. Usually, a list of the Reward Signals being used.
|
|
:return: a sub-class of PPOAgent tailored to the environment.
|
|
"""
|
|
LearningModel.__init__(
|
|
self, m_size, normalize, use_recurrent, brain, seed, stream_names
|
|
)
|
|
if num_layers < 1:
|
|
num_layers = 1
|
|
if brain.vector_action_space_type == "continuous":
|
|
self.create_cc_actor_critic(h_size, num_layers, vis_encode_type)
|
|
self.entropy = tf.ones_like(tf.reshape(self.value, [-1])) * self.entropy
|
|
else:
|
|
self.create_dc_actor_critic(h_size, num_layers, vis_encode_type)
|
|
self.create_losses(
|
|
self.log_probs,
|
|
self.old_log_probs,
|
|
self.value_heads,
|
|
self.entropy,
|
|
beta,
|
|
epsilon,
|
|
lr,
|
|
max_step,
|
|
)
|
|
|
|
def create_losses(
|
|
self, probs, old_probs, value_heads, entropy, beta, epsilon, lr, max_step
|
|
):
|
|
"""
|
|
Creates training-specific Tensorflow ops for PPO models.
|
|
:param probs: Current policy probabilities
|
|
:param old_probs: Past policy probabilities
|
|
:param value_heads: Value estimate tensors from each value stream
|
|
:param beta: Entropy regularization strength
|
|
:param entropy: Current policy entropy
|
|
:param epsilon: Value for policy-divergence threshold
|
|
:param lr: Learning rate
|
|
:param max_step: Total number of training steps.
|
|
"""
|
|
self.returns_holders = {}
|
|
self.old_values = {}
|
|
for name in value_heads.keys():
|
|
returns_holder = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="{}_returns".format(name)
|
|
)
|
|
old_value = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name)
|
|
)
|
|
self.returns_holders[name] = returns_holder
|
|
self.old_values[name] = old_value
|
|
self.advantage = tf.placeholder(
|
|
shape=[None, 1], dtype=tf.float32, name="advantages"
|
|
)
|
|
self.learning_rate = tf.train.polynomial_decay(
|
|
lr, self.global_step, max_step, 1e-10, power=1.0
|
|
)
|
|
|
|
decay_epsilon = tf.train.polynomial_decay(
|
|
epsilon, self.global_step, max_step, 0.1, power=1.0
|
|
)
|
|
decay_beta = tf.train.polynomial_decay(
|
|
beta, self.global_step, max_step, 1e-5, power=1.0
|
|
)
|
|
|
|
value_losses = []
|
|
for name, head in value_heads.items():
|
|
clipped_value_estimate = self.old_values[name] + tf.clip_by_value(
|
|
tf.reduce_sum(head, axis=1) - self.old_values[name],
|
|
-decay_epsilon,
|
|
decay_epsilon,
|
|
)
|
|
v_opt_a = tf.squared_difference(
|
|
self.returns_holders[name], tf.reduce_sum(head, axis=1)
|
|
)
|
|
v_opt_b = tf.squared_difference(
|
|
self.returns_holders[name], clipped_value_estimate
|
|
)
|
|
value_loss = tf.reduce_mean(
|
|
tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), self.mask, 2)[1]
|
|
)
|
|
value_losses.append(value_loss)
|
|
self.value_loss = tf.reduce_mean(value_losses)
|
|
|
|
r_theta = tf.exp(probs - old_probs)
|
|
p_opt_a = r_theta * self.advantage
|
|
p_opt_b = (
|
|
tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon)
|
|
* self.advantage
|
|
)
|
|
self.policy_loss = -tf.reduce_mean(
|
|
tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), self.mask, 2)[1]
|
|
)
|
|
|
|
self.loss = (
|
|
self.policy_loss
|
|
+ 0.5 * self.value_loss
|
|
- decay_beta
|
|
* tf.reduce_mean(tf.dynamic_partition(entropy, self.mask, 2)[1])
|
|
)
|
|
|
|
def create_ppo_optimizer(self):
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
|
|
self.update_batch = optimizer.minimize(self.loss)
|