您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
489 行
21 KiB
489 行
21 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning (PPO)
|
|
# Contains an implementation of PPO as described (https://arxiv.org/abs/1707.06347).
|
|
|
|
import logging
|
|
from collections import deque
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from mlagents.envs import AllBrainInfo, BrainInfo
|
|
from mlagents.trainers.buffer import Buffer
|
|
from mlagents.trainers.ppo.policy import PPOPolicy
|
|
from mlagents.trainers.trainer import Trainer
|
|
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class PPOTrainer(Trainer):
|
|
"""The PPOTrainer is an implementation of the PPO algorithm."""
|
|
|
|
def __init__(
|
|
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
|
|
):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
:param load: Whether the model should be loaded.
|
|
:param seed: The seed the model will be initialized with
|
|
:param run_id: The identifier of the current run
|
|
"""
|
|
super(PPOTrainer, self).__init__(brain, trainer_parameters, training, run_id)
|
|
self.param_keys = [
|
|
"batch_size",
|
|
"beta",
|
|
"buffer_size",
|
|
"epsilon",
|
|
"gamma",
|
|
"hidden_units",
|
|
"lambd",
|
|
"learning_rate",
|
|
"max_steps",
|
|
"normalize",
|
|
"num_epoch",
|
|
"num_layers",
|
|
"time_horizon",
|
|
"sequence_length",
|
|
"summary_freq",
|
|
"use_recurrent",
|
|
"summary_path",
|
|
"memory_size",
|
|
"use_curiosity",
|
|
"curiosity_strength",
|
|
"curiosity_enc_size",
|
|
"model_path",
|
|
]
|
|
|
|
self.check_param_keys()
|
|
self.use_curiosity = bool(trainer_parameters["use_curiosity"])
|
|
self.step = 0
|
|
self.policy = PPOPolicy(seed, brain, trainer_parameters, self.is_training, load)
|
|
|
|
stats = {
|
|
"Environment/Cumulative Reward": [],
|
|
"Environment/Episode Length": [],
|
|
"Policy/Value Estimate": [],
|
|
"Policy/Entropy": [],
|
|
"Losses/Value Loss": [],
|
|
"Losses/Policy Loss": [],
|
|
"Policy/Learning Rate": [],
|
|
}
|
|
if self.use_curiosity:
|
|
stats["Losses/Forward Loss"] = []
|
|
stats["Losses/Inverse Loss"] = []
|
|
stats["Policy/Curiosity Reward"] = []
|
|
self.intrinsic_rewards = {}
|
|
self.stats = stats
|
|
|
|
self.training_buffer = Buffer()
|
|
self.cumulative_rewards = {}
|
|
self._reward_buffer = deque(maxlen=reward_buff_cap)
|
|
self.episode_steps = {}
|
|
|
|
def __str__(self):
|
|
return """Hyperparameters for the PPO Trainer of brain {0}: \n{1}""".format(
|
|
self.brain_name,
|
|
"\n".join(
|
|
[
|
|
"\t{0}:\t{1}".format(x, self.trainer_parameters[x])
|
|
for x in self.param_keys
|
|
]
|
|
),
|
|
)
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters["max_steps"])
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.step
|
|
|
|
@property
|
|
def reward_buffer(self):
|
|
"""
|
|
Returns the reward buffer. The reward buffer contains the cumulative
|
|
rewards of the most recent episodes completed by agents using this
|
|
trainer.
|
|
:return: the reward buffer.
|
|
"""
|
|
return self._reward_buffer
|
|
|
|
def increment_step_and_update_last_reward(self):
|
|
"""
|
|
Increment the step count of the trainer and Updates the last reward
|
|
"""
|
|
if len(self.stats["Environment/Cumulative Reward"]) > 0:
|
|
mean_reward = np.mean(self.stats["Environment/Cumulative Reward"])
|
|
self.policy.update_reward(mean_reward)
|
|
self.policy.increment_step()
|
|
self.step = self.policy.get_current_step()
|
|
|
|
def construct_curr_info(self, next_info: BrainInfo) -> BrainInfo:
|
|
"""
|
|
Constructs a BrainInfo which contains the most recent previous experiences for all agents info
|
|
which correspond to the agents in a provided next_info.
|
|
:BrainInfo next_info: A t+1 BrainInfo.
|
|
:return: curr_info: Reconstructed BrainInfo to match agents of next_info.
|
|
"""
|
|
visual_observations = [[]]
|
|
vector_observations = []
|
|
text_observations = []
|
|
memories = []
|
|
rewards = []
|
|
local_dones = []
|
|
max_reacheds = []
|
|
agents = []
|
|
prev_vector_actions = []
|
|
prev_text_actions = []
|
|
action_masks = []
|
|
for agent_id in next_info.agents:
|
|
agent_brain_info = self.training_buffer[agent_id].last_brain_info
|
|
if agent_brain_info is None:
|
|
agent_brain_info = next_info
|
|
agent_index = agent_brain_info.agents.index(agent_id)
|
|
for i in range(len(next_info.visual_observations)):
|
|
visual_observations[i].append(
|
|
agent_brain_info.visual_observations[i][agent_index]
|
|
)
|
|
vector_observations.append(
|
|
agent_brain_info.vector_observations[agent_index]
|
|
)
|
|
text_observations.append(agent_brain_info.text_observations[agent_index])
|
|
if self.policy.use_recurrent:
|
|
if len(agent_brain_info.memories) > 0:
|
|
memories.append(agent_brain_info.memories[agent_index])
|
|
else:
|
|
memories.append(self.policy.make_empty_memory(1))
|
|
rewards.append(agent_brain_info.rewards[agent_index])
|
|
local_dones.append(agent_brain_info.local_done[agent_index])
|
|
max_reacheds.append(agent_brain_info.max_reached[agent_index])
|
|
agents.append(agent_brain_info.agents[agent_index])
|
|
prev_vector_actions.append(
|
|
agent_brain_info.previous_vector_actions[agent_index]
|
|
)
|
|
prev_text_actions.append(
|
|
agent_brain_info.previous_text_actions[agent_index]
|
|
)
|
|
action_masks.append(agent_brain_info.action_masks[agent_index])
|
|
if self.policy.use_recurrent:
|
|
memories = np.vstack(memories)
|
|
curr_info = BrainInfo(
|
|
visual_observations,
|
|
vector_observations,
|
|
text_observations,
|
|
memories,
|
|
rewards,
|
|
agents,
|
|
local_dones,
|
|
prev_vector_actions,
|
|
prev_text_actions,
|
|
max_reacheds,
|
|
action_masks,
|
|
)
|
|
return curr_info
|
|
|
|
def add_experiences(
|
|
self,
|
|
curr_all_info: AllBrainInfo,
|
|
next_all_info: AllBrainInfo,
|
|
take_action_outputs,
|
|
):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param curr_all_info: Dictionary of all current brains and corresponding BrainInfo.
|
|
:param next_all_info: Dictionary of all current brains and corresponding BrainInfo.
|
|
:param take_action_outputs: The outputs of the Policy's get_action method.
|
|
"""
|
|
self.trainer_metrics.start_experience_collection_timer()
|
|
if take_action_outputs:
|
|
self.stats["Policy/Value Estimate"].append(
|
|
take_action_outputs["value"].mean()
|
|
)
|
|
self.stats["Policy/Entropy"].append(take_action_outputs["entropy"].mean())
|
|
self.stats["Policy/Learning Rate"].append(
|
|
take_action_outputs["learning_rate"]
|
|
)
|
|
|
|
curr_info = curr_all_info[self.brain_name]
|
|
next_info = next_all_info[self.brain_name]
|
|
|
|
for agent_id in curr_info.agents:
|
|
self.training_buffer[agent_id].last_brain_info = curr_info
|
|
self.training_buffer[
|
|
agent_id
|
|
].last_take_action_outputs = take_action_outputs
|
|
|
|
if curr_info.agents != next_info.agents:
|
|
curr_to_use = self.construct_curr_info(next_info)
|
|
else:
|
|
curr_to_use = curr_info
|
|
|
|
intrinsic_rewards = self.policy.get_intrinsic_rewards(curr_to_use, next_info)
|
|
|
|
for agent_id in next_info.agents:
|
|
stored_info = self.training_buffer[agent_id].last_brain_info
|
|
stored_take_action_outputs = self.training_buffer[
|
|
agent_id
|
|
].last_take_action_outputs
|
|
if stored_info is not None:
|
|
idx = stored_info.agents.index(agent_id)
|
|
next_idx = next_info.agents.index(agent_id)
|
|
if not stored_info.local_done[idx]:
|
|
for i, _ in enumerate(stored_info.visual_observations):
|
|
self.training_buffer[agent_id]["visual_obs%d" % i].append(
|
|
stored_info.visual_observations[i][idx]
|
|
)
|
|
self.training_buffer[agent_id]["next_visual_obs%d" % i].append(
|
|
next_info.visual_observations[i][next_idx]
|
|
)
|
|
if self.policy.use_vec_obs:
|
|
self.training_buffer[agent_id]["vector_obs"].append(
|
|
stored_info.vector_observations[idx]
|
|
)
|
|
self.training_buffer[agent_id]["next_vector_in"].append(
|
|
next_info.vector_observations[next_idx]
|
|
)
|
|
if self.policy.use_recurrent:
|
|
if stored_info.memories.shape[1] == 0:
|
|
stored_info.memories = np.zeros(
|
|
(len(stored_info.agents), self.policy.m_size)
|
|
)
|
|
self.training_buffer[agent_id]["memory"].append(
|
|
stored_info.memories[idx]
|
|
)
|
|
actions = stored_take_action_outputs["action"]
|
|
if self.policy.use_continuous_act:
|
|
actions_pre = stored_take_action_outputs["pre_action"]
|
|
self.training_buffer[agent_id]["actions_pre"].append(
|
|
actions_pre[idx]
|
|
)
|
|
epsilons = stored_take_action_outputs["random_normal_epsilon"]
|
|
self.training_buffer[agent_id]["random_normal_epsilon"].append(
|
|
epsilons[idx]
|
|
)
|
|
else:
|
|
self.training_buffer[agent_id]["action_mask"].append(
|
|
stored_info.action_masks[idx], padding_value=1
|
|
)
|
|
a_dist = stored_take_action_outputs["log_probs"]
|
|
value = stored_take_action_outputs["value"]
|
|
self.training_buffer[agent_id]["actions"].append(actions[idx])
|
|
self.training_buffer[agent_id]["prev_action"].append(
|
|
stored_info.previous_vector_actions[idx]
|
|
)
|
|
self.training_buffer[agent_id]["masks"].append(1.0)
|
|
if self.use_curiosity:
|
|
self.training_buffer[agent_id]["rewards"].append(
|
|
next_info.rewards[next_idx] + intrinsic_rewards[next_idx]
|
|
)
|
|
else:
|
|
self.training_buffer[agent_id]["rewards"].append(
|
|
next_info.rewards[next_idx]
|
|
)
|
|
self.training_buffer[agent_id]["action_probs"].append(a_dist[idx])
|
|
self.training_buffer[agent_id]["value_estimates"].append(
|
|
value[idx][0]
|
|
)
|
|
if agent_id not in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.cumulative_rewards[agent_id] += next_info.rewards[next_idx]
|
|
if self.use_curiosity:
|
|
if agent_id not in self.intrinsic_rewards:
|
|
self.intrinsic_rewards[agent_id] = 0
|
|
self.intrinsic_rewards[agent_id] += intrinsic_rewards[next_idx]
|
|
if not next_info.local_done[next_idx]:
|
|
if agent_id not in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
self.episode_steps[agent_id] += 1
|
|
self.trainer_metrics.end_experience_collection_timer()
|
|
|
|
def process_experiences(self, current_info: AllBrainInfo, new_info: AllBrainInfo):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param current_info: Dictionary of all current brains and corresponding BrainInfo.
|
|
:param new_info: Dictionary of all next brains and corresponding BrainInfo.
|
|
"""
|
|
self.trainer_metrics.start_experience_collection_timer()
|
|
info = new_info[self.brain_name]
|
|
for l in range(len(info.agents)):
|
|
agent_actions = self.training_buffer[info.agents[l]]["actions"]
|
|
if (
|
|
info.local_done[l]
|
|
or len(agent_actions) > self.trainer_parameters["time_horizon"]
|
|
) and len(agent_actions) > 0:
|
|
agent_id = info.agents[l]
|
|
if info.local_done[l] and not info.max_reached[l]:
|
|
value_next = 0.0
|
|
else:
|
|
if info.max_reached[l]:
|
|
bootstrapping_info = self.training_buffer[
|
|
agent_id
|
|
].last_brain_info
|
|
idx = bootstrapping_info.agents.index(agent_id)
|
|
else:
|
|
bootstrapping_info = info
|
|
idx = l
|
|
value_next = self.policy.get_value_estimate(bootstrapping_info, idx)
|
|
|
|
self.training_buffer[agent_id]["advantages"].set(
|
|
get_gae(
|
|
rewards=self.training_buffer[agent_id]["rewards"].get_batch(),
|
|
value_estimates=self.training_buffer[agent_id][
|
|
"value_estimates"
|
|
].get_batch(),
|
|
value_next=value_next,
|
|
gamma=self.trainer_parameters["gamma"],
|
|
lambd=self.trainer_parameters["lambd"],
|
|
)
|
|
)
|
|
self.training_buffer[agent_id]["discounted_returns"].set(
|
|
self.training_buffer[agent_id]["advantages"].get_batch()
|
|
+ self.training_buffer[agent_id]["value_estimates"].get_batch()
|
|
)
|
|
|
|
self.training_buffer.append_update_buffer(
|
|
agent_id,
|
|
batch_size=None,
|
|
training_length=self.policy.sequence_length,
|
|
)
|
|
|
|
self.training_buffer[agent_id].reset_agent()
|
|
if info.local_done[l]:
|
|
self.cumulative_returns_since_policy_update.append(
|
|
self.cumulative_rewards.get(agent_id, 0)
|
|
)
|
|
self.stats["Environment/Cumulative Reward"].append(
|
|
self.cumulative_rewards.get(agent_id, 0)
|
|
)
|
|
self.reward_buffer.appendleft(
|
|
self.cumulative_rewards.get(agent_id, 0)
|
|
)
|
|
self.stats["Environment/Episode Length"].append(
|
|
self.episode_steps.get(agent_id, 0)
|
|
)
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.episode_steps[agent_id] = 0
|
|
if self.use_curiosity:
|
|
self.stats["Policy/Curiosity Reward"].append(
|
|
self.intrinsic_rewards.get(agent_id, 0)
|
|
)
|
|
self.intrinsic_rewards[agent_id] = 0
|
|
self.trainer_metrics.end_experience_collection_timer()
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
self.training_buffer.reset_local_buffers()
|
|
for agent_id in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
for agent_id in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
if self.use_curiosity:
|
|
for agent_id in self.intrinsic_rewards:
|
|
self.intrinsic_rewards[agent_id] = 0
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
size_of_buffer = len(self.training_buffer.update_buffer["actions"])
|
|
return size_of_buffer > max(
|
|
int(self.trainer_parameters["buffer_size"] / self.policy.sequence_length), 1
|
|
)
|
|
|
|
def update_policy(self):
|
|
"""
|
|
Uses demonstration_buffer to update the policy.
|
|
"""
|
|
self.trainer_metrics.start_policy_update_timer(
|
|
number_experiences=len(self.training_buffer.update_buffer["actions"]),
|
|
mean_return=float(np.mean(self.cumulative_returns_since_policy_update)),
|
|
)
|
|
self.cumulative_returns_since_policy_update = []
|
|
n_sequences = max(
|
|
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
|
|
)
|
|
value_total, policy_total, forward_total, inverse_total = [], [], [], []
|
|
advantages = self.training_buffer.update_buffer["advantages"].get_batch()
|
|
self.training_buffer.update_buffer["advantages"].set(
|
|
(advantages - advantages.mean()) / (advantages.std() + 1e-10)
|
|
)
|
|
num_epoch = self.trainer_parameters["num_epoch"]
|
|
for _ in range(num_epoch):
|
|
self.training_buffer.update_buffer.shuffle()
|
|
buffer = self.training_buffer.update_buffer
|
|
for l in range(
|
|
len(self.training_buffer.update_buffer["actions"]) // n_sequences
|
|
):
|
|
start = l * n_sequences
|
|
end = (l + 1) * n_sequences
|
|
run_out = self.policy.update(
|
|
buffer.make_mini_batch(start, end), n_sequences
|
|
)
|
|
value_total.append(run_out["value_loss"])
|
|
policy_total.append(np.abs(run_out["policy_loss"]))
|
|
if self.use_curiosity:
|
|
inverse_total.append(run_out["inverse_loss"])
|
|
forward_total.append(run_out["forward_loss"])
|
|
self.stats["Losses/Value Loss"].append(np.mean(value_total))
|
|
self.stats["Losses/Policy Loss"].append(np.mean(policy_total))
|
|
if self.use_curiosity:
|
|
self.stats["Losses/Forward Loss"].append(np.mean(forward_total))
|
|
self.stats["Losses/Inverse Loss"].append(np.mean(inverse_total))
|
|
self.training_buffer.reset_update_buffer()
|
|
self.trainer_metrics.end_policy_update()
|
|
|
|
|
|
def discount_rewards(r, gamma=0.99, value_next=0.0):
|
|
"""
|
|
Computes discounted sum of future rewards for use in updating value estimate.
|
|
:param r: List of rewards.
|
|
:param gamma: Discount factor.
|
|
:param value_next: T+1 value estimate for returns calculation.
|
|
:return: discounted sum of future rewards as list.
|
|
"""
|
|
discounted_r = np.zeros_like(r)
|
|
running_add = value_next
|
|
for t in reversed(range(0, r.size)):
|
|
running_add = running_add * gamma + r[t]
|
|
discounted_r[t] = running_add
|
|
return discounted_r
|
|
|
|
|
|
def get_gae(rewards, value_estimates, value_next=0.0, gamma=0.99, lambd=0.95):
|
|
"""
|
|
Computes generalized advantage estimate for use in updating policy.
|
|
:param rewards: list of rewards for time-steps t to T.
|
|
:param value_next: Value estimate for time-step T+1.
|
|
:param value_estimates: list of value estimates for time-steps t to T.
|
|
:param gamma: Discount factor.
|
|
:param lambd: GAE weighing factor.
|
|
:return: list of advantage estimates for time-steps t to T.
|
|
"""
|
|
value_estimates = np.asarray(value_estimates.tolist() + [value_next])
|
|
delta_t = rewards + gamma * value_estimates[1:] - value_estimates[:-1]
|
|
advantage = discount_rewards(r=delta_t, gamma=gamma * lambd)
|
|
return advantage
|