Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

103 行
3.8 KiB

from .communicator import Communicator
from .environment import UnityEnvironment
from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2 import (
UnityRLInitializationOutputProto,
)
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.communicator_objects.observation_pb2 import (
ObservationProto,
NONE as COMPRESSION_TYPE_NONE,
PNG as COMPRESSION_TYPE_PNG,
)
from mlagents.envs.communicator_objects.space_type_pb2 import discrete, continuous
class MockCommunicator(Communicator):
def __init__(
self,
discrete_action=False,
visual_inputs=0,
num_agents=3,
brain_name="RealFakeBrain",
vec_obs_size=3,
):
"""
Python side of the grpc communication. Python is the client and Unity the server
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
"""
super().__init__()
self.is_discrete = discrete_action
self.steps = 0
self.visual_inputs = visual_inputs
self.has_been_closed = False
self.num_agents = num_agents
self.brain_name = brain_name
self.vec_obs_size = vec_obs_size
def initialize(self, inputs: UnityInputProto) -> UnityOutputProto:
bp = BrainParametersProto(
vector_action_size=[2],
vector_action_descriptions=["", ""],
vector_action_space_type=discrete if self.is_discrete else continuous,
brain_name=self.brain_name,
is_training=True,
)
rl_init = UnityRLInitializationOutputProto(
name="RealFakeAcademy",
version=UnityEnvironment.API_VERSION,
log_path="",
brain_parameters=[bp],
)
output = UnityRLOutputProto(agentInfos=self._get_agent_infos())
return UnityOutputProto(rl_initialization_output=rl_init, rl_output=output)
def _get_agent_infos(self):
dict_agent_info = {}
list_agent_info = []
vector_obs = [1, 2, 3]
observations = [
ObservationProto(
compressed_data=None,
shape=[30, 40, 3],
compression_type=COMPRESSION_TYPE_PNG,
)
for _ in range(self.visual_inputs)
]
vector_obs_proto = ObservationProto(
float_data=ObservationProto.FloatData(data=vector_obs),
shape=[len(vector_obs)],
compression_type=COMPRESSION_TYPE_NONE,
)
observations.append(vector_obs_proto)
for i in range(self.num_agents):
list_agent_info.append(
AgentInfoProto(
reward=1,
done=(i == 2),
max_step_reached=False,
id=i,
observations=observations,
)
)
dict_agent_info["RealFakeBrain"] = UnityRLOutputProto.ListAgentInfoProto(
value=list_agent_info
)
return dict_agent_info
def exchange(self, inputs: UnityInputProto) -> UnityOutputProto:
result = UnityRLOutputProto(agentInfos=self._get_agent_infos())
return UnityOutputProto(rl_output=result)
def close(self):
"""
Sends a shutdown signal to the unity environment, and closes the grpc connection.
"""
self.has_been_closed = True