Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

468 行
20 KiB

# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (Ghost Trainer)
from typing import Deque, Dict, List, cast
import numpy as np
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.policy import Policy
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.stats import StatsPropertyType
from mlagents.trainers.behavior_id_utils import (
BehaviorIdentifiers,
create_name_behavior_id,
)
logger = get_logger(__name__)
class GhostTrainer(Trainer):
"""
The GhostTrainer trains agents in adversarial games (there are teams in opposition) using a self-play mechanism.
In adversarial settings with self-play, at any time, there is only a single learning team. The other team(s) is
"ghosted" which means that its agents are executing fixed policies and not learning. The GhostTrainer wraps
a standard RL trainer which trains the learning team and ensures that only the trajectories collected
by the learning team are used for training. The GhostTrainer also maintains past policy snapshots to be used
as the fixed policies when the team is not learning. The GhostTrainer is 1:1 with brain_names as the other
trainers, and is responsible for one or more teams. Note, a GhostTrainer can have only one team in
asymmetric games where there is only one team with a particular behavior i.e. Hide and Seek.
The GhostController manages high level coordination between multiple ghost trainers. The learning team id
is cycled throughout a training run.
"""
def __init__(
self,
trainer,
brain_name,
controller,
reward_buff_cap,
trainer_parameters,
training,
run_id,
):
"""
Creates a GhostTrainer.
:param trainer: The trainer of the policy/policies being trained with self_play
:param brain_name: The name of the brain associated with trainer config
:param controller: GhostController that coordinates all ghost trainers and calculates ELO
:param reward_buff_cap: Max reward history to track in the reward buffer
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
:param run_id: The identifier of the current run
"""
super().__init__(
brain_name, trainer_parameters, training, run_id, reward_buff_cap
)
self.trainer = trainer
self.controller = controller
self._internal_trajectory_queues: Dict[str, AgentManagerQueue[Trajectory]] = {}
self._internal_policy_queues: Dict[str, AgentManagerQueue[Policy]] = {}
self._team_to_name_to_policy_queue: Dict[
int, Dict[str, AgentManagerQueue[Policy]]
] = {}
self._name_to_parsed_behavior_id: Dict[str, BehaviorIdentifiers] = {}
# assign ghost's stats collection to wrapped trainer's
self._stats_reporter = self.trainer.stats_reporter
# Set the logging to print ELO in the console
self._stats_reporter.add_property(StatsPropertyType.SELF_PLAY, True)
self_play_parameters = trainer_parameters["self_play"]
self.window = self_play_parameters.get("window", 10)
self.play_against_latest_model_ratio = self_play_parameters.get(
"play_against_latest_model_ratio", 0.5
)
if (
self.play_against_latest_model_ratio > 1.0
or self.play_against_latest_model_ratio < 0.0
):
logger.warning(
"The play_against_latest_model_ratio is not between 0 and 1."
)
self.steps_between_save = self_play_parameters.get("save_steps", 20000)
self.steps_between_swap = self_play_parameters.get("swap_steps", 20000)
self.steps_to_train_team = self_play_parameters.get("team_change", 100000)
if self.steps_to_train_team > self.get_max_steps:
logger.warning(
"The max steps of the GhostTrainer for behavior name {} is less than team change. This team will not face \
opposition that has been trained if the opposition is managed by a different GhostTrainer as in an \
asymmetric game.".format(
self.brain_name
)
)
# Counts the The number of steps of the ghost policies. Snapshot swapping
# depends on this counter whereas snapshot saving and team switching depends
# on the wrapped. This ensures that all teams train for the same number of trainer
# steps.
self.ghost_step: int = 0
# A list of dicts from brain name to a single snapshot for this trainer's policies
self.policy_snapshots: List[Dict[str, List[float]]] = []
# A dict from brain name to the current snapshot of this trainer's policies
self.current_policy_snapshot: Dict[str, List[float]] = {}
self.snapshot_counter: int = 0
self.policies: Dict[str, TFPolicy] = {}
# wrapped_training_team and learning team need to be separate
# in the situation where new agents are created destroyed
# after learning team switches. These agents need to be added
# to trainers properly.
self._learning_team: int = None
self.wrapped_trainer_team: int = None
self.last_save: int = 0
self.last_swap: int = 0
self.last_team_change: int = 0
# Chosen because it is the initial ELO in Chess
self.initial_elo: float = self_play_parameters.get("initial_elo", 1200.0)
self.policy_elos: List[float] = [self.initial_elo] * (
self.window + 1
) # for learning policy
self.current_opponent: int = 0
@property
def get_step(self) -> int:
"""
Returns the number of steps the wrapped trainer has performed
:return: the step count of the wrapped trainer
"""
return self.trainer.get_step
@property
def reward_buffer(self) -> Deque[float]:
"""
Returns the reward buffer. The reward buffer contains the cumulative
rewards of the most recent episodes completed by agents using this
trainer.
:return: the reward buffer.
"""
return self.trainer.reward_buffer
@property
def current_elo(self) -> float:
"""
Gets ELO of current policy which is always last in the list
:return: ELO of current policy
"""
return self.policy_elos[-1]
def change_current_elo(self, change: float) -> None:
"""
Changes elo of current policy which is always last in the list
:param change: Amount to change current elo by
"""
self.policy_elos[-1] += change
def get_opponent_elo(self) -> float:
"""
Get elo of current opponent policy
:return: ELO of current opponent policy
"""
return self.policy_elos[self.current_opponent]
def change_opponent_elo(self, change: float) -> None:
"""
Changes elo of current opponent policy
:param change: Amount to change current opponent elo by
"""
self.policy_elos[self.current_opponent] -= change
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Determines the final result of an episode and asks the GhostController
to calculate the ELO change. The GhostController changes the ELO
of the opponent policy since this may be in a different GhostTrainer
i.e. in asymmetric games. We assume the last reward determines the winner.
:param trajectory: Trajectory.
"""
if trajectory.done_reached:
# Assumption is that final reward is >0/0/<0 for win/draw/loss
final_reward = trajectory.steps[-1].reward
result = 0.5
if final_reward > 0:
result = 1.0
elif final_reward < 0:
result = 0.0
change = self.controller.compute_elo_rating_changes(
self.current_elo, result
)
self.change_current_elo(change)
self._stats_reporter.add_stat("Self-play/ELO", self.current_elo)
def advance(self) -> None:
"""
Steps the trainer, passing trajectories to wrapped trainer and calling trainer advance
"""
for trajectory_queue in self.trajectory_queues:
parsed_behavior_id = self._name_to_parsed_behavior_id[
trajectory_queue.behavior_id
]
if parsed_behavior_id.team_id == self._learning_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_trajectory_queue = self._internal_trajectory_queues[
parsed_behavior_id.brain_name
]
try:
# We grab at most the maximum length of the queue.
# This ensures that even if the queue is being filled faster than it is
# being emptied, the trajectories in the queue are on-policy.
for _ in range(trajectory_queue.qsize()):
t = trajectory_queue.get_nowait()
# adds to wrapped trainers queue
internal_trajectory_queue.put(t)
self._process_trajectory(t)
except AgentManagerQueue.Empty:
pass
else:
# Dump trajectories from non-learning policy
try:
for _ in range(trajectory_queue.qsize()):
t = trajectory_queue.get_nowait()
# count ghost steps
self.ghost_step += len(t.steps)
except AgentManagerQueue.Empty:
pass
self.next_summary_step = self.trainer.next_summary_step
self.trainer.advance()
if self.get_step - self.last_team_change > self.steps_to_train_team:
self.controller.change_training_team(self.get_step)
self.last_team_change = self.get_step
next_learning_team = self.controller.get_learning_team
# CASE 1: Current learning team is managed by this GhostTrainer.
# If the learning team changes, the following loop over queues will push the
# new policy into the policy queue for the new learning agent if
# that policy is managed by this GhostTrainer. Otherwise, it will save the current snapshot.
# CASE 2: Current learning team is managed by a different GhostTrainer.
# If the learning team changes to a team managed by this GhostTrainer, this loop
# will push the current_snapshot into the correct queue. Otherwise,
# it will continue skipping and swap_snapshot will continue to handle
# pushing fixed snapshots
# Case 3: No team change. The if statement just continues to push the policy
# into the correct queue (or not if not learning team).
for brain_name in self._internal_policy_queues:
internal_policy_queue = self._internal_policy_queues[brain_name]
try:
policy = cast(TFPolicy, internal_policy_queue.get_nowait())
self.current_policy_snapshot[brain_name] = policy.get_weights()
except AgentManagerQueue.Empty:
pass
if next_learning_team in self._team_to_name_to_policy_queue:
name_to_policy_queue = self._team_to_name_to_policy_queue[
next_learning_team
]
if brain_name in name_to_policy_queue:
behavior_id = create_name_behavior_id(
brain_name, next_learning_team
)
policy = self.get_policy(behavior_id)
policy.load_weights(self.current_policy_snapshot[brain_name])
name_to_policy_queue[brain_name].put(policy)
# Note save and swap should be on different step counters.
# We don't want to save unless the policy is learning.
if self.get_step - self.last_save > self.steps_between_save:
self._save_snapshot()
self.last_save = self.get_step
if (
self._learning_team != next_learning_team
or self.ghost_step - self.last_swap > self.steps_between_swap
):
self._learning_team = next_learning_team
self._swap_snapshots()
self.last_swap = self.ghost_step
def end_episode(self):
"""
Forwarding call to wrapped trainers end_episode
"""
self.trainer.end_episode()
def save_model(self, name_behavior_id: str) -> None:
"""
Forwarding call to wrapped trainers save_model
"""
parsed_behavior_id = self._name_to_parsed_behavior_id[name_behavior_id]
brain_name = parsed_behavior_id.brain_name
self.trainer.save_model(brain_name)
def export_model(self, name_behavior_id: str) -> None:
"""
Forwarding call to wrapped trainers export_model.
"""
parsed_behavior_id = self._name_to_parsed_behavior_id[name_behavior_id]
brain_name = parsed_behavior_id.brain_name
self.trainer.export_model(brain_name)
def create_policy(
self, parsed_behavior_id: BehaviorIdentifiers, brain_parameters: BrainParameters
) -> TFPolicy:
"""
Creates policy with the wrapped trainer's create_policy function
The first policy encountered sets the wrapped
trainer team. This is to ensure that all agents from the same multi-agent
team are grouped. All policies associated with this team are added to the
wrapped trainer to be trained.
"""
policy = self.trainer.create_policy(parsed_behavior_id, brain_parameters)
policy.create_tf_graph()
policy.initialize_or_load()
policy.init_load_weights()
team_id = parsed_behavior_id.team_id
self.controller.subscribe_team_id(team_id, self)
# First policy or a new agent on the same team encountered
if self.wrapped_trainer_team is None or team_id == self.wrapped_trainer_team:
internal_trainer_policy = self.trainer.create_policy(
parsed_behavior_id, brain_parameters
)
self.trainer.add_policy(parsed_behavior_id, internal_trainer_policy)
internal_trainer_policy.init_load_weights()
self.current_policy_snapshot[
parsed_behavior_id.brain_name
] = internal_trainer_policy.get_weights()
policy.load_weights(internal_trainer_policy.get_weights())
self._save_snapshot() # Need to save after trainer initializes policy
self._learning_team = self.controller.get_learning_team
self.wrapped_trainer_team = team_id
return policy
def add_policy(
self, parsed_behavior_id: BehaviorIdentifiers, policy: TFPolicy
) -> None:
"""
Adds policy to GhostTrainer.
:param parsed_behavior_id: Behavior ID that the policy should belong to.
:param policy: Policy to associate with name_behavior_id.
"""
name_behavior_id = parsed_behavior_id.behavior_id
self._name_to_parsed_behavior_id[name_behavior_id] = parsed_behavior_id
self.policies[name_behavior_id] = policy
def get_policy(self, name_behavior_id: str) -> TFPolicy:
"""
Gets policy associated with name_behavior_id
:param name_behavior_id: Fully qualified behavior name
:return: Policy associated with name_behavior_id
"""
return self.policies[name_behavior_id]
def _save_snapshot(self) -> None:
"""
Saves a snapshot of the current weights of the policy and maintains the policy_snapshots
according to the window size
"""
for brain_name in self.current_policy_snapshot:
current_snapshot_for_brain_name = self.current_policy_snapshot[brain_name]
try:
self.policy_snapshots[self.snapshot_counter][
brain_name
] = current_snapshot_for_brain_name
except IndexError:
self.policy_snapshots.append(
{brain_name: current_snapshot_for_brain_name}
)
self.policy_elos[self.snapshot_counter] = self.current_elo
self.snapshot_counter = (self.snapshot_counter + 1) % self.window
def _swap_snapshots(self) -> None:
"""
Swaps the appropriate weight to the policy and pushes it to respective policy queues
"""
for team_id in self._team_to_name_to_policy_queue:
if team_id == self._learning_team:
continue
elif np.random.uniform() < (1 - self.play_against_latest_model_ratio):
x = np.random.randint(len(self.policy_snapshots))
snapshot = self.policy_snapshots[x]
else:
snapshot = self.current_policy_snapshot
x = "current"
self.current_opponent = -1 if x == "current" else x
name_to_policy_queue = self._team_to_name_to_policy_queue[team_id]
for brain_name in self._team_to_name_to_policy_queue[team_id]:
behavior_id = create_name_behavior_id(brain_name, team_id)
policy = self.get_policy(behavior_id)
policy.load_weights(snapshot[brain_name])
name_to_policy_queue[brain_name].put(policy)
logger.debug(
"Step {}: Swapping snapshot {} to id {} with team {} learning".format(
self.ghost_step, x, behavior_id, self._learning_team
)
)
def publish_policy_queue(self, policy_queue: AgentManagerQueue[Policy]) -> None:
"""
Adds a policy queue for every member of the team to the list of queues to publish to when this Trainer
makes a policy update. Creates an internal policy queue for the wrapped
trainer to push to. The GhostTrainer pushes all policies to the env.
:param queue: Policy queue to publish to.
"""
super().publish_policy_queue(policy_queue)
parsed_behavior_id = self._name_to_parsed_behavior_id[policy_queue.behavior_id]
try:
self._team_to_name_to_policy_queue[parsed_behavior_id.team_id][
parsed_behavior_id.brain_name
] = policy_queue
except KeyError:
self._team_to_name_to_policy_queue[parsed_behavior_id.team_id] = {
parsed_behavior_id.brain_name: policy_queue
}
if parsed_behavior_id.team_id == self.wrapped_trainer_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_policy_queue: AgentManagerQueue[Policy] = AgentManagerQueue(
parsed_behavior_id.brain_name
)
self._internal_policy_queues[
parsed_behavior_id.brain_name
] = internal_policy_queue
self.trainer.publish_policy_queue(internal_policy_queue)
def subscribe_trajectory_queue(
self, trajectory_queue: AgentManagerQueue[Trajectory]
) -> None:
"""
Adds a trajectory queue for every member of the team to the list of queues for the trainer
to ingest Trajectories from. Creates an internal trajectory queue to push trajectories from
the learning team. The wrapped trainer subscribes to this queue.
:param queue: Trajectory queue to publish to.
"""
super().subscribe_trajectory_queue(trajectory_queue)
parsed_behavior_id = self._name_to_parsed_behavior_id[
trajectory_queue.behavior_id
]
if parsed_behavior_id.team_id == self.wrapped_trainer_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_trajectory_queue: AgentManagerQueue[
Trajectory
] = AgentManagerQueue(parsed_behavior_id.brain_name)
self._internal_trajectory_queues[
parsed_behavior_id.brain_name
] = internal_trajectory_queue
self.trainer.subscribe_trajectory_queue(internal_trajectory_queue)