Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

123 行
4.6 KiB

import json
import math
from typing import Dict, Any, TextIO
from .exception import CurriculumConfigError, CurriculumLoadingError
from mlagents_envs.logging_util import get_logger
logger = get_logger(__name__)
class Curriculum:
def __init__(self, brain_name: str, config: Dict):
"""
Initializes a Curriculum object.
:param brain_name: Name of the brain this Curriculum is associated with
:param config: Dictionary of fields needed to configure the Curriculum
"""
self.max_lesson_num = 0
self.measure = None
self._lesson_num = 0
self.brain_name = brain_name
self.config = config
self.smoothing_value = 0.0
for key in [
"parameters",
"measure",
"thresholds",
"min_lesson_length",
"signal_smoothing",
]:
if key not in self.config:
raise CurriculumConfigError(
f"{brain_name} curriculum config does not contain a {key} field."
)
self.smoothing_value = 0
self.measure = self.config["measure"]
self.min_lesson_length = self.config["min_lesson_length"]
self.max_lesson_num = len(self.config["thresholds"])
parameters = self.config["parameters"]
for key in parameters:
if len(parameters[key]) != self.max_lesson_num + 1:
raise CurriculumConfigError(
f"The parameter {key} in {brain_name}'s curriculum must have {self.max_lesson_num + 1} values "
f"but {len(parameters[key])} were found"
)
@property
def lesson_num(self) -> int:
return self._lesson_num
@lesson_num.setter
def lesson_num(self, lesson_num: int) -> None:
self._lesson_num = max(0, min(lesson_num, self.max_lesson_num))
def increment_lesson(self, measure_val: float) -> bool:
"""
Increments the lesson number depending on the progress given.
:param measure_val: Measure of progress (either reward or percentage
steps completed).
:return Whether the lesson was incremented.
"""
if not self.config or not measure_val or math.isnan(measure_val):
return False
if self.config["signal_smoothing"]:
measure_val = self.smoothing_value * 0.25 + 0.75 * measure_val
self.smoothing_value = measure_val
if self.lesson_num < self.max_lesson_num:
if measure_val > self.config["thresholds"][self.lesson_num]:
self.lesson_num += 1
config = {}
parameters = self.config["parameters"]
for key in parameters:
config[key] = parameters[key][self.lesson_num]
logger.info(
"{} lesson changed. Now in lesson {}: {}".format(
self.brain_name,
self.lesson_num,
", ".join([str(x) + " -> " + str(config[x]) for x in config]),
)
)
return True
return False
def get_config(self, lesson: int = None) -> Dict[str, Any]:
"""
Returns reset parameters which correspond to the lesson.
:param lesson: The lesson you want to get the config of. If None, the
current lesson is returned.
:return: The configuration of the reset parameters.
"""
if not self.config:
return {}
if lesson is None:
lesson = self.lesson_num
lesson = max(0, min(lesson, self.max_lesson_num))
config = {}
parameters = self.config["parameters"]
for key in parameters:
config[key] = parameters[key][lesson]
return config
@staticmethod
def load_curriculum_file(config_path: str) -> Dict:
try:
with open(config_path) as data_file:
return Curriculum._load_curriculum(data_file)
except OSError:
raise CurriculumLoadingError(f"The file {config_path} could not be found.")
except UnicodeDecodeError:
raise CurriculumLoadingError(f"There was an error decoding {config_path}")
@staticmethod
def _load_curriculum(fp: TextIO) -> Dict:
try:
return json.load(fp)
except json.decoder.JSONDecodeError as e:
raise CurriculumLoadingError(
"Error parsing JSON file. Please check for formatting errors. "
"A tool such as https://jsonlint.com/ can be helpful with this."
) from e