您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
701 行
28 KiB
701 行
28 KiB
from typing import Any, Dict, List, Optional, Tuple, Callable
|
|
import numpy as np
|
|
from distutils.version import LooseVersion
|
|
|
|
from mlagents_envs.timers import timed
|
|
|
|
from mlagents.model_serialization import SerializationSettings, export_policy_model
|
|
from mlagents.tf_utils import tf
|
|
from mlagents import tf_utils
|
|
from mlagents_envs.exception import UnityException
|
|
from mlagents_envs.base_env import BehaviorSpec
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.action_info import ActionInfo
|
|
from mlagents.trainers.trajectory import SplitObservations
|
|
from mlagents.trainers.behavior_id_utils import get_global_agent_id
|
|
from mlagents_envs.base_env import DecisionSteps
|
|
from mlagents.trainers.tf.models import ModelUtils
|
|
from mlagents.trainers.settings import TrainerSettings, EncoderType
|
|
from mlagents.trainers import __version__
|
|
from mlagents.trainers.tf.distributions import (
|
|
GaussianDistribution,
|
|
MultiCategoricalDistribution,
|
|
)
|
|
from mlagents.tf_utils.globals import get_rank
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
# This is the version number of the inputs and outputs of the model, and
|
|
# determines compatibility with inference in Barracuda.
|
|
MODEL_FORMAT_VERSION = 2
|
|
|
|
EPSILON = 1e-6 # Small value to avoid divide by zero
|
|
|
|
|
|
class UnityPolicyException(UnityException):
|
|
"""
|
|
Related to errors with the Trainer.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class TFPolicy(Policy):
|
|
"""
|
|
Contains a learning model, and the necessary
|
|
functions to save/load models and create the input placeholders.
|
|
"""
|
|
|
|
broadcast_global_variables: Callable[[int], None] = lambda x: None
|
|
|
|
def __init__(
|
|
self,
|
|
seed: int,
|
|
behavior_spec: BehaviorSpec,
|
|
trainer_settings: TrainerSettings,
|
|
model_path: str,
|
|
load: bool = False,
|
|
tanh_squash: bool = False,
|
|
reparameterize: bool = False,
|
|
condition_sigma_on_obs: bool = True,
|
|
create_tf_graph: bool = True,
|
|
):
|
|
"""
|
|
Initialized the policy.
|
|
:param seed: Random seed to use for TensorFlow.
|
|
:param brain: The corresponding Brain for this policy.
|
|
:param trainer_settings: The trainer parameters.
|
|
:param model_path: Where to load/save the model.
|
|
:param load: If True, load model from model_path. Otherwise, create new model.
|
|
"""
|
|
super().__init__(
|
|
seed,
|
|
behavior_spec,
|
|
trainer_settings,
|
|
model_path,
|
|
load,
|
|
tanh_squash,
|
|
reparameterize,
|
|
condition_sigma_on_obs,
|
|
)
|
|
# for ghost trainer save/load snapshots
|
|
self.assign_phs: List[tf.Tensor] = []
|
|
self.assign_ops: List[tf.Operation] = []
|
|
self.update_dict: Dict[str, tf.Tensor] = {}
|
|
self.inference_dict: Dict[str, tf.Tensor] = {}
|
|
self.first_normalization_update: bool = False
|
|
|
|
self.graph = tf.Graph()
|
|
self.sess = tf.Session(
|
|
config=tf_utils.generate_session_config(), graph=self.graph
|
|
)
|
|
self.saver: Optional[tf.Operation] = None
|
|
self._initialize_tensorflow_references()
|
|
self.grads = None
|
|
self.update_batch: Optional[tf.Operation] = None
|
|
self.trainable_variables: List[tf.Variable] = []
|
|
self.rank = get_rank()
|
|
if create_tf_graph:
|
|
self.create_tf_graph()
|
|
|
|
def get_trainable_variables(self) -> List[tf.Variable]:
|
|
"""
|
|
Returns a List of the trainable variables in this policy. if create_tf_graph hasn't been called,
|
|
returns empty list.
|
|
"""
|
|
return self.trainable_variables
|
|
|
|
def create_tf_graph(self) -> None:
|
|
"""
|
|
Builds the tensorflow graph needed for this policy.
|
|
"""
|
|
with self.graph.as_default():
|
|
tf.set_random_seed(self.seed)
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
if len(_vars) > 0:
|
|
# We assume the first thing created in the graph is the Policy. If
|
|
# already populated, don't create more tensors.
|
|
return
|
|
|
|
self.create_input_placeholders()
|
|
encoded = self._create_encoder(
|
|
self.visual_in,
|
|
self.processed_vector_in,
|
|
self.h_size,
|
|
self.num_layers,
|
|
self.vis_encode_type,
|
|
)
|
|
if self.use_continuous_act:
|
|
self._create_cc_actor(
|
|
encoded,
|
|
self.tanh_squash,
|
|
self.reparameterize,
|
|
self.condition_sigma_on_obs,
|
|
)
|
|
else:
|
|
self._create_dc_actor(encoded)
|
|
self.trainable_variables = tf.get_collection(
|
|
tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy"
|
|
)
|
|
self.trainable_variables += tf.get_collection(
|
|
tf.GraphKeys.TRAINABLE_VARIABLES, scope="lstm"
|
|
) # LSTMs need to be root scope for Barracuda export
|
|
|
|
self.inference_dict = {
|
|
"action": self.output,
|
|
"log_probs": self.all_log_probs,
|
|
"entropy": self.entropy,
|
|
}
|
|
if self.use_continuous_act:
|
|
self.inference_dict["pre_action"] = self.output_pre
|
|
if self.use_recurrent:
|
|
self.inference_dict["memory_out"] = self.memory_out
|
|
|
|
# We do an initialize to make the Policy usable out of the box. If an optimizer is needed,
|
|
# it will re-load the full graph
|
|
self._initialize_graph()
|
|
|
|
def _create_encoder(
|
|
self,
|
|
visual_in: List[tf.Tensor],
|
|
vector_in: tf.Tensor,
|
|
h_size: int,
|
|
num_layers: int,
|
|
vis_encode_type: EncoderType,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Creates an encoder for visual and vector observations.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
:return: The hidden layer (tf.Tensor) after the encoder.
|
|
"""
|
|
with tf.variable_scope("policy"):
|
|
encoded = ModelUtils.create_observation_streams(
|
|
self.visual_in,
|
|
self.processed_vector_in,
|
|
1,
|
|
h_size,
|
|
num_layers,
|
|
vis_encode_type,
|
|
)[0]
|
|
return encoded
|
|
|
|
@staticmethod
|
|
def _convert_version_string(version_string: str) -> Tuple[int, ...]:
|
|
"""
|
|
Converts the version string into a Tuple of ints (major_ver, minor_ver, patch_ver).
|
|
:param version_string: The semantic-versioned version string (X.Y.Z).
|
|
:return: A Tuple containing (major_ver, minor_ver, patch_ver).
|
|
"""
|
|
ver = LooseVersion(version_string)
|
|
return tuple(map(int, ver.version[0:3]))
|
|
|
|
def _check_model_version(self, version: str) -> None:
|
|
"""
|
|
Checks whether the model being loaded was created with the same version of
|
|
ML-Agents, and throw a warning if not so.
|
|
"""
|
|
if self.version_tensors is not None:
|
|
loaded_ver = tuple(
|
|
num.eval(session=self.sess) for num in self.version_tensors
|
|
)
|
|
if loaded_ver != TFPolicy._convert_version_string(version):
|
|
logger.warning(
|
|
f"The model checkpoint you are loading from was saved with ML-Agents version "
|
|
f"{loaded_ver[0]}.{loaded_ver[1]}.{loaded_ver[2]} but your current ML-Agents"
|
|
f"version is {version}. Model may not behave properly."
|
|
)
|
|
|
|
def _initialize_graph(self):
|
|
with self.graph.as_default():
|
|
self.saver = tf.train.Saver(max_to_keep=self._keep_checkpoints)
|
|
init = tf.global_variables_initializer()
|
|
self.sess.run(init)
|
|
|
|
def _load_graph(self, model_path: str, reset_global_steps: bool = False) -> None:
|
|
with self.graph.as_default():
|
|
self.saver = tf.train.Saver(max_to_keep=self._keep_checkpoints)
|
|
logger.info(f"Loading model from {model_path}.")
|
|
ckpt = tf.train.get_checkpoint_state(model_path)
|
|
if ckpt is None:
|
|
raise UnityPolicyException(
|
|
"The model {} could not be loaded. Make "
|
|
"sure you specified the right "
|
|
"--run-id and that the previous run you are loading from had the same "
|
|
"behavior names.".format(model_path)
|
|
)
|
|
try:
|
|
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
|
|
except tf.errors.NotFoundError:
|
|
raise UnityPolicyException(
|
|
"The model {} was found but could not be loaded. Make "
|
|
"sure the model is from the same version of ML-Agents, has the same behavior parameters, "
|
|
"and is using the same trainer configuration as the current run.".format(
|
|
model_path
|
|
)
|
|
)
|
|
self._check_model_version(__version__)
|
|
if reset_global_steps:
|
|
self._set_step(0)
|
|
logger.info(
|
|
"Starting training from step 0 and saving to {}.".format(
|
|
self.model_path
|
|
)
|
|
)
|
|
else:
|
|
logger.info(f"Resuming training from step {self.get_current_step()}.")
|
|
|
|
def initialize_or_load(self):
|
|
# If there is an initialize path, load from that. Else, load from the set model path.
|
|
# If load is set to True, don't reset steps to 0. Else, do. This allows a user to,
|
|
# e.g., resume from an initialize path.
|
|
reset_steps = not self.load
|
|
if self.initialize_path is not None:
|
|
self._load_graph(self.initialize_path, reset_global_steps=reset_steps)
|
|
elif self.load:
|
|
self._load_graph(self.model_path, reset_global_steps=reset_steps)
|
|
else:
|
|
self._initialize_graph()
|
|
# broadcast initial weights from worker-0
|
|
TFPolicy.broadcast_global_variables(0)
|
|
|
|
def get_weights(self):
|
|
with self.graph.as_default():
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
values = [v.eval(session=self.sess) for v in _vars]
|
|
return values
|
|
|
|
def init_load_weights(self):
|
|
with self.graph.as_default():
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
values = [v.eval(session=self.sess) for v in _vars]
|
|
for var, value in zip(_vars, values):
|
|
assign_ph = tf.placeholder(var.dtype, shape=value.shape)
|
|
self.assign_phs.append(assign_ph)
|
|
self.assign_ops.append(tf.assign(var, assign_ph))
|
|
|
|
def load_weights(self, values):
|
|
if len(self.assign_ops) == 0:
|
|
logger.warning(
|
|
"Calling load_weights in tf_policy but assign_ops is empty. Did you forget to call init_load_weights?"
|
|
)
|
|
with self.graph.as_default():
|
|
feed_dict = {}
|
|
for assign_ph, value in zip(self.assign_phs, values):
|
|
feed_dict[assign_ph] = value
|
|
self.sess.run(self.assign_ops, feed_dict=feed_dict)
|
|
|
|
@timed
|
|
def evaluate(
|
|
self, decision_requests: DecisionSteps, global_agent_ids: List[str]
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Evaluates policy for the agent experiences provided.
|
|
:param decision_requests: DecisionSteps object containing inputs.
|
|
:param global_agent_ids: The global (with worker ID) agent ids of the data in the batched_step_result.
|
|
:return: Outputs from network as defined by self.inference_dict.
|
|
"""
|
|
feed_dict = {
|
|
self.batch_size_ph: len(decision_requests),
|
|
self.sequence_length_ph: 1,
|
|
}
|
|
if self.use_recurrent:
|
|
if not self.use_continuous_act:
|
|
feed_dict[self.prev_action] = self.retrieve_previous_action(
|
|
global_agent_ids
|
|
)
|
|
feed_dict[self.memory_in] = self.retrieve_memories(global_agent_ids)
|
|
feed_dict = self.fill_eval_dict(feed_dict, decision_requests)
|
|
run_out = self._execute_model(feed_dict, self.inference_dict)
|
|
return run_out
|
|
|
|
def get_action(
|
|
self, decision_requests: DecisionSteps, worker_id: int = 0
|
|
) -> ActionInfo:
|
|
"""
|
|
Decides actions given observations information, and takes them in environment.
|
|
:param decision_requests: A dictionary of brain names and DecisionSteps from environment.
|
|
:param worker_id: In parallel environment training, the unique id of the environment worker that
|
|
the DecisionSteps came from. Used to construct a globally unique id for each agent.
|
|
:return: an ActionInfo containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
if len(decision_requests) == 0:
|
|
return ActionInfo.empty()
|
|
|
|
global_agent_ids = [
|
|
get_global_agent_id(worker_id, int(agent_id))
|
|
for agent_id in decision_requests.agent_id
|
|
] # For 1-D array, the iterator order is correct.
|
|
|
|
run_out = self.evaluate( # pylint: disable=assignment-from-no-return
|
|
decision_requests, global_agent_ids
|
|
)
|
|
|
|
self.save_memories(global_agent_ids, run_out.get("memory_out"))
|
|
return ActionInfo(
|
|
action=run_out.get("action"),
|
|
value=run_out.get("value"),
|
|
outputs=run_out,
|
|
agent_ids=decision_requests.agent_id,
|
|
)
|
|
|
|
def update(self, mini_batch, num_sequences):
|
|
"""
|
|
Performs update of the policy.
|
|
:param num_sequences: Number of experience trajectories in batch.
|
|
:param mini_batch: Batch of experiences.
|
|
:return: Results of update.
|
|
"""
|
|
raise UnityPolicyException("The update function was not implemented.")
|
|
|
|
def _execute_model(self, feed_dict, out_dict):
|
|
"""
|
|
Executes model.
|
|
:param feed_dict: Input dictionary mapping nodes to input data.
|
|
:param out_dict: Output dictionary mapping names to nodes.
|
|
:return: Dictionary mapping names to input data.
|
|
"""
|
|
network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict)
|
|
run_out = dict(zip(list(out_dict.keys()), network_out))
|
|
return run_out
|
|
|
|
def fill_eval_dict(self, feed_dict, batched_step_result):
|
|
vec_vis_obs = SplitObservations.from_observations(batched_step_result.obs)
|
|
for i, _ in enumerate(vec_vis_obs.visual_observations):
|
|
feed_dict[self.visual_in[i]] = vec_vis_obs.visual_observations[i]
|
|
if self.use_vec_obs:
|
|
feed_dict[self.vector_in] = vec_vis_obs.vector_observations
|
|
if not self.use_continuous_act:
|
|
mask = np.ones(
|
|
(
|
|
len(batched_step_result),
|
|
sum(self.behavior_spec.discrete_action_branches),
|
|
),
|
|
dtype=np.float32,
|
|
)
|
|
if batched_step_result.action_mask is not None:
|
|
mask = 1 - np.concatenate(batched_step_result.action_mask, axis=1)
|
|
feed_dict[self.action_masks] = mask
|
|
return feed_dict
|
|
|
|
def get_current_step(self):
|
|
"""
|
|
Gets current model step.
|
|
:return: current model step.
|
|
"""
|
|
step = self.sess.run(self.global_step)
|
|
return step
|
|
|
|
def _set_step(self, step: int) -> int:
|
|
"""
|
|
Sets current model step to step without creating additional ops.
|
|
:param step: Step to set the current model step to.
|
|
:return: The step the model was set to.
|
|
"""
|
|
current_step = self.get_current_step()
|
|
# Increment a positive or negative number of steps.
|
|
return self.increment_step(step - current_step)
|
|
|
|
def increment_step(self, n_steps):
|
|
"""
|
|
Increments model step.
|
|
"""
|
|
out_dict = {
|
|
"global_step": self.global_step,
|
|
"increment_step": self.increment_step_op,
|
|
}
|
|
feed_dict = {self.steps_to_increment: n_steps}
|
|
return self.sess.run(out_dict, feed_dict=feed_dict)["global_step"]
|
|
|
|
def get_inference_vars(self):
|
|
"""
|
|
:return:list of inference var names
|
|
"""
|
|
return list(self.inference_dict.keys())
|
|
|
|
def get_update_vars(self):
|
|
"""
|
|
:return:list of update var names
|
|
"""
|
|
return list(self.update_dict.keys())
|
|
|
|
def checkpoint(self, checkpoint_path: str, settings: SerializationSettings) -> None:
|
|
"""
|
|
Checkpoints the policy on disk.
|
|
|
|
:param checkpoint_path: filepath to write the checkpoint
|
|
:param settings: SerializationSettings for exporting the model.
|
|
"""
|
|
# Save the TF checkpoint and graph definition
|
|
with self.graph.as_default():
|
|
if self.saver:
|
|
self.saver.save(self.sess, f"{checkpoint_path}.ckpt")
|
|
tf.train.write_graph(
|
|
self.graph, self.model_path, "raw_graph_def.pb", as_text=False
|
|
)
|
|
# also save the policy so we have optimized model files for each checkpoint
|
|
self.save(checkpoint_path, settings)
|
|
|
|
def save(self, output_filepath: str, settings: SerializationSettings) -> None:
|
|
"""
|
|
Saves the serialized model, given a path and SerializationSettings
|
|
|
|
This method will save the policy graph to the given filepath. The path
|
|
should be provided without an extension as multiple serialized model formats
|
|
may be generated as a result.
|
|
|
|
:param output_filepath: path (without suffix) for the model file(s)
|
|
:param settings: SerializationSettings for how to save the model.
|
|
"""
|
|
# save model if there is only one worker or
|
|
# only on worker-0 if there are multiple workers
|
|
if self.rank is not None and self.rank != 0:
|
|
return
|
|
export_policy_model(output_filepath, settings, self.graph, self.sess)
|
|
|
|
def update_normalization(self, vector_obs: np.ndarray) -> None:
|
|
"""
|
|
If this policy normalizes vector observations, this will update the norm values in the graph.
|
|
:param vector_obs: The vector observations to add to the running estimate of the distribution.
|
|
"""
|
|
if self.use_vec_obs and self.normalize:
|
|
if self.first_normalization_update:
|
|
self.sess.run(
|
|
self.init_normalization_op, feed_dict={self.vector_in: vector_obs}
|
|
)
|
|
self.first_normalization_update = False
|
|
else:
|
|
self.sess.run(
|
|
self.update_normalization_op, feed_dict={self.vector_in: vector_obs}
|
|
)
|
|
|
|
@property
|
|
def use_vis_obs(self):
|
|
return self.vis_obs_size > 0
|
|
|
|
@property
|
|
def use_vec_obs(self):
|
|
return self.vec_obs_size > 0
|
|
|
|
def _initialize_tensorflow_references(self):
|
|
self.value_heads: Dict[str, tf.Tensor] = {}
|
|
self.normalization_steps: Optional[tf.Variable] = None
|
|
self.running_mean: Optional[tf.Variable] = None
|
|
self.running_variance: Optional[tf.Variable] = None
|
|
self.init_normalization_op: Optional[tf.Operation] = None
|
|
self.update_normalization_op: Optional[tf.Operation] = None
|
|
self.value: Optional[tf.Tensor] = None
|
|
self.all_log_probs: tf.Tensor = None
|
|
self.total_log_probs: Optional[tf.Tensor] = None
|
|
self.entropy: Optional[tf.Tensor] = None
|
|
self.output_pre: Optional[tf.Tensor] = None
|
|
self.output: Optional[tf.Tensor] = None
|
|
self.selected_actions: tf.Tensor = None
|
|
self.action_masks: Optional[tf.Tensor] = None
|
|
self.prev_action: Optional[tf.Tensor] = None
|
|
self.memory_in: Optional[tf.Tensor] = None
|
|
self.memory_out: Optional[tf.Tensor] = None
|
|
self.version_tensors: Optional[Tuple[tf.Tensor, tf.Tensor, tf.Tensor]] = None
|
|
|
|
def create_input_placeholders(self):
|
|
with self.graph.as_default():
|
|
(
|
|
self.global_step,
|
|
self.increment_step_op,
|
|
self.steps_to_increment,
|
|
) = ModelUtils.create_global_steps()
|
|
self.vector_in, self.visual_in = ModelUtils.create_input_placeholders(
|
|
self.behavior_spec.observation_shapes
|
|
)
|
|
if self.normalize:
|
|
self.first_normalization_update = True
|
|
normalization_tensors = ModelUtils.create_normalizer(self.vector_in)
|
|
self.update_normalization_op = normalization_tensors.update_op
|
|
self.init_normalization_op = normalization_tensors.init_op
|
|
self.normalization_steps = normalization_tensors.steps
|
|
self.running_mean = normalization_tensors.running_mean
|
|
self.running_variance = normalization_tensors.running_variance
|
|
self.processed_vector_in = ModelUtils.normalize_vector_obs(
|
|
self.vector_in,
|
|
self.running_mean,
|
|
self.running_variance,
|
|
self.normalization_steps,
|
|
)
|
|
else:
|
|
self.processed_vector_in = self.vector_in
|
|
self.update_normalization_op = None
|
|
|
|
self.batch_size_ph = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="batch_size"
|
|
)
|
|
self.sequence_length_ph = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="sequence_length"
|
|
)
|
|
self.mask_input = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="masks"
|
|
)
|
|
# Only needed for PPO, but needed for BC module
|
|
self.epsilon = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon"
|
|
)
|
|
self.mask = tf.cast(self.mask_input, tf.int32)
|
|
|
|
tf.Variable(
|
|
int(self.behavior_spec.is_action_continuous()),
|
|
name="is_continuous_control",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
int_version = TFPolicy._convert_version_string(__version__)
|
|
major_ver_t = tf.Variable(
|
|
int_version[0],
|
|
name="trainer_major_version",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
minor_ver_t = tf.Variable(
|
|
int_version[1],
|
|
name="trainer_minor_version",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
patch_ver_t = tf.Variable(
|
|
int_version[2],
|
|
name="trainer_patch_version",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
self.version_tensors = (major_ver_t, minor_ver_t, patch_ver_t)
|
|
tf.Variable(
|
|
MODEL_FORMAT_VERSION,
|
|
name="version_number",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
tf.Variable(
|
|
self.m_size, name="memory_size", trainable=False, dtype=tf.int32
|
|
)
|
|
if self.behavior_spec.is_action_continuous():
|
|
tf.Variable(
|
|
self.act_size[0],
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
else:
|
|
tf.Variable(
|
|
sum(self.act_size),
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
|
|
def _create_cc_actor(
|
|
self,
|
|
encoded: tf.Tensor,
|
|
tanh_squash: bool = False,
|
|
reparameterize: bool = False,
|
|
condition_sigma_on_obs: bool = True,
|
|
) -> None:
|
|
"""
|
|
Creates Continuous control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
:param tanh_squash: Whether to use a tanh function, or a clipped output.
|
|
:param reparameterize: Whether we are using the resampling trick to update the policy.
|
|
"""
|
|
if self.use_recurrent:
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder(
|
|
encoded, self.memory_in, self.sequence_length_ph, name="lstm_policy"
|
|
)
|
|
|
|
self.memory_out = tf.identity(memory_policy_out, name="recurrent_out")
|
|
else:
|
|
hidden_policy = encoded
|
|
|
|
with tf.variable_scope("policy"):
|
|
distribution = GaussianDistribution(
|
|
hidden_policy,
|
|
self.act_size,
|
|
reparameterize=reparameterize,
|
|
tanh_squash=tanh_squash,
|
|
condition_sigma=condition_sigma_on_obs,
|
|
)
|
|
|
|
if tanh_squash:
|
|
self.output_pre = distribution.sample
|
|
self.output = tf.identity(self.output_pre, name="action")
|
|
else:
|
|
self.output_pre = distribution.sample
|
|
# Clip and scale output to ensure actions are always within [-1, 1] range.
|
|
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
|
|
self.output = tf.identity(output_post, name="action")
|
|
|
|
self.selected_actions = tf.stop_gradient(self.output)
|
|
|
|
self.all_log_probs = tf.identity(distribution.log_probs, name="action_probs")
|
|
self.entropy = distribution.entropy
|
|
|
|
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
|
|
self.total_log_probs = distribution.total_log_probs
|
|
|
|
def _create_dc_actor(self, encoded: tf.Tensor) -> None:
|
|
"""
|
|
Creates Discrete control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
"""
|
|
if self.use_recurrent:
|
|
self.prev_action = tf.placeholder(
|
|
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
|
|
)
|
|
prev_action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.prev_action[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
hidden_policy = tf.concat([encoded, prev_action_oh], axis=1)
|
|
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder(
|
|
hidden_policy,
|
|
self.memory_in,
|
|
self.sequence_length_ph,
|
|
name="lstm_policy",
|
|
)
|
|
|
|
self.memory_out = tf.identity(memory_policy_out, "recurrent_out")
|
|
else:
|
|
hidden_policy = encoded
|
|
|
|
self.action_masks = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
|
|
)
|
|
|
|
with tf.variable_scope("policy"):
|
|
distribution = MultiCategoricalDistribution(
|
|
hidden_policy, self.act_size, self.action_masks
|
|
)
|
|
# It's important that we are able to feed_dict a value into this tensor to get the
|
|
# right one-hot encoding, so we can't do identity on it.
|
|
self.output = distribution.sample
|
|
self.all_log_probs = tf.identity(distribution.log_probs, name="action")
|
|
self.selected_actions = tf.stop_gradient(
|
|
distribution.sample_onehot
|
|
) # In discrete, these are onehot
|
|
self.entropy = distribution.entropy
|
|
self.total_log_probs = distribution.total_log_probs
|