您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
569 行
25 KiB
569 行
25 KiB
import atexit
|
|
import glob
|
|
import uuid
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
import subprocess
|
|
from typing import Dict, List, Optional, Any
|
|
|
|
import mlagents_envs
|
|
from mlagents_envs.side_channel.side_channel import SideChannel, IncomingMessage
|
|
|
|
from mlagents_envs.base_env import (
|
|
BaseEnv,
|
|
BatchedStepResult,
|
|
AgentGroupSpec,
|
|
AgentGroup,
|
|
AgentId,
|
|
)
|
|
from mlagents_envs.timers import timed, hierarchical_timer
|
|
from mlagents_envs.exception import (
|
|
UnityEnvironmentException,
|
|
UnityCommunicationException,
|
|
UnityActionException,
|
|
UnityTimeOutException,
|
|
)
|
|
|
|
from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET
|
|
from mlagents_envs.rpc_utils import (
|
|
agent_group_spec_from_proto,
|
|
batched_step_result_from_proto,
|
|
)
|
|
|
|
from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto
|
|
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
|
|
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto
|
|
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
|
|
from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import (
|
|
UnityRLInitializationInputProto,
|
|
)
|
|
|
|
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
|
|
|
|
from .rpc_communicator import RpcCommunicator
|
|
from sys import platform
|
|
import signal
|
|
import struct
|
|
|
|
|
|
logger = logging.getLogger("mlagents_envs")
|
|
|
|
|
|
class UnityEnvironment(BaseEnv):
|
|
SCALAR_ACTION_TYPES = (int, np.int32, np.int64, float, np.float32, np.float64)
|
|
SINGLE_BRAIN_ACTION_TYPES = SCALAR_ACTION_TYPES + (list, np.ndarray)
|
|
|
|
# Communication protocol version.
|
|
# When connecting to C#, this must match Academy.k_ApiVersion
|
|
# Currently we require strict equality between the communication protocol
|
|
# on each side, although we may allow some flexibility in the future.
|
|
# This should be incremented whenever a change is made to the communication protocol.
|
|
API_VERSION = "0.15.0"
|
|
|
|
# Default port that the editor listens on. If an environment executable
|
|
# isn't specified, this port will be used.
|
|
DEFAULT_EDITOR_PORT = 5004
|
|
|
|
# Command line argument used to pass the port to the executable environment.
|
|
PORT_COMMAND_LINE_ARG = "--mlagents-port"
|
|
|
|
def __init__(
|
|
self,
|
|
file_name: Optional[str] = None,
|
|
worker_id: int = 0,
|
|
base_port: int = 5005,
|
|
seed: int = 0,
|
|
docker_training: bool = False,
|
|
no_graphics: bool = False,
|
|
timeout_wait: int = 60,
|
|
args: Optional[List[str]] = None,
|
|
side_channels: Optional[List[SideChannel]] = None,
|
|
):
|
|
"""
|
|
Starts a new unity environment and establishes a connection with the environment.
|
|
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
|
|
Ensure that the network where training takes place is secure.
|
|
|
|
:string file_name: Name of Unity environment binary.
|
|
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
|
|
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
|
|
:bool docker_training: Informs this class whether the process is being run within a container.
|
|
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode
|
|
:int timeout_wait: Time (in seconds) to wait for connection from environment.
|
|
:list args: Addition Unity command line arguments
|
|
:list side_channels: Additional side channel for no-rl communication with Unity
|
|
"""
|
|
args = args or []
|
|
atexit.register(self._close)
|
|
self.port = base_port + worker_id
|
|
self._buffer_size = 12000
|
|
# If true, this means the environment was successfully loaded
|
|
self._loaded = False
|
|
# The process that is started. If None, no process was started
|
|
self.proc1 = None
|
|
self.timeout_wait: int = timeout_wait
|
|
self.communicator = self.get_communicator(worker_id, base_port, timeout_wait)
|
|
self.worker_id = worker_id
|
|
self.side_channels: Dict[uuid.UUID, SideChannel] = {}
|
|
if side_channels is not None:
|
|
for _sc in side_channels:
|
|
if _sc.channel_id in self.side_channels:
|
|
raise UnityEnvironmentException(
|
|
"There cannot be two side channels with the same channel id {0}.".format(
|
|
_sc.channel_id
|
|
)
|
|
)
|
|
self.side_channels[_sc.channel_id] = _sc
|
|
|
|
# If the environment name is None, a new environment will not be launched
|
|
# and the communicator will directly try to connect to an existing unity environment.
|
|
# If the worker-id is not 0 and the environment name is None, an error is thrown
|
|
if file_name is None and worker_id != 0:
|
|
raise UnityEnvironmentException(
|
|
"If the environment name is None, "
|
|
"the worker-id must be 0 in order to connect with the Editor."
|
|
)
|
|
if file_name is not None:
|
|
self.executable_launcher(file_name, docker_training, no_graphics, args)
|
|
else:
|
|
logger.info(
|
|
f"Listening on port {self.port}. "
|
|
f"Start training by pressing the Play button in the Unity Editor."
|
|
)
|
|
self._loaded = True
|
|
|
|
rl_init_parameters_in = UnityRLInitializationInputProto(
|
|
seed=seed,
|
|
communication_version=self.API_VERSION,
|
|
package_version=mlagents_envs.__version__,
|
|
)
|
|
try:
|
|
aca_output = self.send_academy_parameters(rl_init_parameters_in)
|
|
aca_params = aca_output.rl_initialization_output
|
|
except UnityTimeOutException:
|
|
self._close()
|
|
raise
|
|
|
|
unity_communicator_version = aca_params.communication_version
|
|
if unity_communicator_version != UnityEnvironment.API_VERSION:
|
|
self._close()
|
|
raise UnityEnvironmentException(
|
|
f"The communication API version is not compatible between Unity and python. "
|
|
f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_communicator_version}.\n "
|
|
f"Please go to https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release "
|
|
f"to download the latest version of ML-Agents."
|
|
)
|
|
else:
|
|
logger.info(
|
|
f"Connected to Unity environment with package version {aca_params.package_version} "
|
|
f"and communication version {aca_params.communication_version}"
|
|
)
|
|
self._env_state: Dict[str, BatchedStepResult] = {}
|
|
self._env_specs: Dict[str, AgentGroupSpec] = {}
|
|
self._env_actions: Dict[str, np.ndarray] = {}
|
|
self._is_first_message = True
|
|
self._update_group_specs(aca_output)
|
|
|
|
@staticmethod
|
|
def get_communicator(worker_id, base_port, timeout_wait):
|
|
return RpcCommunicator(worker_id, base_port, timeout_wait)
|
|
|
|
@staticmethod
|
|
def validate_environment_path(env_path: str) -> Optional[str]:
|
|
# Strip out executable extensions if passed
|
|
env_path = (
|
|
env_path.strip()
|
|
.replace(".app", "")
|
|
.replace(".exe", "")
|
|
.replace(".x86_64", "")
|
|
.replace(".x86", "")
|
|
)
|
|
true_filename = os.path.basename(os.path.normpath(env_path))
|
|
logger.debug("The true file name is {}".format(true_filename))
|
|
|
|
if not (glob.glob(env_path) or glob.glob(env_path + ".*")):
|
|
return None
|
|
|
|
cwd = os.getcwd()
|
|
launch_string = None
|
|
true_filename = os.path.basename(os.path.normpath(env_path))
|
|
if platform == "linux" or platform == "linux2":
|
|
candidates = glob.glob(os.path.join(cwd, env_path) + ".x86_64")
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(os.path.join(cwd, env_path) + ".x86")
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(env_path + ".x86_64")
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(env_path + ".x86")
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
|
|
elif platform == "darwin":
|
|
candidates = glob.glob(
|
|
os.path.join(cwd, env_path + ".app", "Contents", "MacOS", true_filename)
|
|
)
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(
|
|
os.path.join(env_path + ".app", "Contents", "MacOS", true_filename)
|
|
)
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(
|
|
os.path.join(cwd, env_path + ".app", "Contents", "MacOS", "*")
|
|
)
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(
|
|
os.path.join(env_path + ".app", "Contents", "MacOS", "*")
|
|
)
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
elif platform == "win32":
|
|
candidates = glob.glob(os.path.join(cwd, env_path + ".exe"))
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(env_path + ".exe")
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
return launch_string
|
|
|
|
def executable_launcher(self, file_name, docker_training, no_graphics, args):
|
|
launch_string = self.validate_environment_path(file_name)
|
|
if launch_string is None:
|
|
self._close()
|
|
raise UnityEnvironmentException(
|
|
f"Couldn't launch the {file_name} environment. Provided filename does not match any environments."
|
|
)
|
|
else:
|
|
logger.debug("This is the launch string {}".format(launch_string))
|
|
# Launch Unity environment
|
|
if not docker_training:
|
|
subprocess_args = [launch_string]
|
|
if no_graphics:
|
|
subprocess_args += ["-nographics", "-batchmode"]
|
|
subprocess_args += [
|
|
UnityEnvironment.PORT_COMMAND_LINE_ARG,
|
|
str(self.port),
|
|
]
|
|
subprocess_args += args
|
|
try:
|
|
self.proc1 = subprocess.Popen(
|
|
subprocess_args,
|
|
# start_new_session=True means that signals to the parent python process
|
|
# (e.g. SIGINT from keyboard interrupt) will not be sent to the new process on POSIX platforms.
|
|
# This is generally good since we want the environment to have a chance to shutdown,
|
|
# but may be undesirable in come cases; if so, we'll add a command-line toggle.
|
|
# Note that on Windows, the CTRL_C signal will still be sent.
|
|
start_new_session=True,
|
|
)
|
|
except PermissionError as perm:
|
|
# This is likely due to missing read or execute permissions on file.
|
|
raise UnityEnvironmentException(
|
|
f"Error when trying to launch environment - make sure "
|
|
f"permissions are set correctly. For example "
|
|
f'"chmod -R 755 {launch_string}"'
|
|
) from perm
|
|
|
|
else:
|
|
# Comments for future maintenance:
|
|
# xvfb-run is a wrapper around Xvfb, a virtual xserver where all
|
|
# rendering is done to virtual memory. It automatically creates a
|
|
# new virtual server automatically picking a server number `auto-servernum`.
|
|
# The server is passed the arguments using `server-args`, we are telling
|
|
# Xvfb to create Screen number 0 with width 640, height 480 and depth 24 bits.
|
|
# Note that 640 X 480 are the default width and height. The main reason for
|
|
# us to add this is because we'd like to change the depth from the default
|
|
# of 8 bits to 24.
|
|
# Unfortunately, this means that we will need to pass the arguments through
|
|
# a shell which is why we set `shell=True`. Now, this adds its own
|
|
# complications. E.g SIGINT can bounce off the shell and not get propagated
|
|
# to the child processes. This is why we add `exec`, so that the shell gets
|
|
# launched, the arguments are passed to `xvfb-run`. `exec` replaces the shell
|
|
# we created with `xvfb`.
|
|
#
|
|
docker_ls = (
|
|
f"exec xvfb-run --auto-servernum --server-args='-screen 0 640x480x24'"
|
|
f" {launch_string} {UnityEnvironment.PORT_COMMAND_LINE_ARG} {self.port}"
|
|
)
|
|
|
|
self.proc1 = subprocess.Popen(
|
|
docker_ls,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
shell=True,
|
|
)
|
|
|
|
def _update_group_specs(self, output: UnityOutputProto) -> None:
|
|
init_output = output.rl_initialization_output
|
|
for brain_param in init_output.brain_parameters:
|
|
# Each BrainParameter in the rl_initialization_output should have at least one AgentInfo
|
|
# Get that agent, because we need some of its observations.
|
|
agent_infos = output.rl_output.agentInfos[brain_param.brain_name]
|
|
if agent_infos.value:
|
|
agent = agent_infos.value[0]
|
|
new_spec = agent_group_spec_from_proto(brain_param, agent)
|
|
self._env_specs[brain_param.brain_name] = new_spec
|
|
logger.info(f"Connected new brain:\n{brain_param.brain_name}")
|
|
|
|
def _update_state(self, output: UnityRLOutputProto) -> None:
|
|
"""
|
|
Collects experience information from all external brains in environment at current step.
|
|
"""
|
|
for brain_name in self._env_specs.keys():
|
|
if brain_name in output.agentInfos:
|
|
agent_info_list = output.agentInfos[brain_name].value
|
|
self._env_state[brain_name] = batched_step_result_from_proto(
|
|
agent_info_list, self._env_specs[brain_name]
|
|
)
|
|
else:
|
|
self._env_state[brain_name] = BatchedStepResult.empty(
|
|
self._env_specs[brain_name]
|
|
)
|
|
self._parse_side_channel_message(self.side_channels, output.side_channel)
|
|
|
|
def reset(self) -> None:
|
|
if self._loaded:
|
|
outputs = self.communicator.exchange(self._generate_reset_input())
|
|
if outputs is None:
|
|
raise UnityCommunicationException("Communicator has stopped.")
|
|
self._update_group_specs(outputs)
|
|
rl_output = outputs.rl_output
|
|
self._update_state(rl_output)
|
|
self._is_first_message = False
|
|
self._env_actions.clear()
|
|
else:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|
|
|
|
@timed
|
|
def step(self) -> None:
|
|
if self._is_first_message:
|
|
return self.reset()
|
|
if not self._loaded:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|
|
# fill the blanks for missing actions
|
|
for group_name in self._env_specs:
|
|
if group_name not in self._env_actions:
|
|
n_agents = 0
|
|
if group_name in self._env_state:
|
|
n_agents = self._env_state[group_name].n_agents()
|
|
self._env_actions[group_name] = self._env_specs[
|
|
group_name
|
|
].create_empty_action(n_agents)
|
|
step_input = self._generate_step_input(self._env_actions)
|
|
with hierarchical_timer("communicator.exchange"):
|
|
outputs = self.communicator.exchange(step_input)
|
|
if outputs is None:
|
|
raise UnityCommunicationException("Communicator has stopped.")
|
|
self._update_group_specs(outputs)
|
|
rl_output = outputs.rl_output
|
|
self._update_state(rl_output)
|
|
self._env_actions.clear()
|
|
|
|
def get_agent_groups(self) -> List[AgentGroup]:
|
|
return list(self._env_specs.keys())
|
|
|
|
def _assert_group_exists(self, agent_group: str) -> None:
|
|
if agent_group not in self._env_specs:
|
|
raise UnityActionException(
|
|
"The group {0} does not correspond to an existing agent group "
|
|
"in the environment".format(agent_group)
|
|
)
|
|
|
|
def set_actions(self, agent_group: AgentGroup, action: np.ndarray) -> None:
|
|
self._assert_group_exists(agent_group)
|
|
if agent_group not in self._env_state:
|
|
return
|
|
spec = self._env_specs[agent_group]
|
|
expected_type = np.float32 if spec.is_action_continuous() else np.int32
|
|
expected_shape = (self._env_state[agent_group].n_agents(), spec.action_size)
|
|
if action.shape != expected_shape:
|
|
raise UnityActionException(
|
|
"The group {0} needs an input of dimension {1} but received input of dimension {2}".format(
|
|
agent_group, expected_shape, action.shape
|
|
)
|
|
)
|
|
if action.dtype != expected_type:
|
|
action = action.astype(expected_type)
|
|
self._env_actions[agent_group] = action
|
|
|
|
def set_action_for_agent(
|
|
self, agent_group: AgentGroup, agent_id: AgentId, action: np.ndarray
|
|
) -> None:
|
|
self._assert_group_exists(agent_group)
|
|
if agent_group not in self._env_state:
|
|
return
|
|
spec = self._env_specs[agent_group]
|
|
expected_shape = (spec.action_size,)
|
|
if action.shape != expected_shape:
|
|
raise UnityActionException(
|
|
"The Agent {0} in group {1} needs an input of dimension {2} but received input of dimension {3}".format(
|
|
agent_id, agent_group, expected_shape, action.shape
|
|
)
|
|
)
|
|
expected_type = np.float32 if spec.is_action_continuous() else np.int32
|
|
if action.dtype != expected_type:
|
|
action = action.astype(expected_type)
|
|
|
|
if agent_group not in self._env_actions:
|
|
self._env_actions[agent_group] = spec.create_empty_action(
|
|
self._env_state[agent_group].n_agents()
|
|
)
|
|
try:
|
|
index = np.where(self._env_state[agent_group].agent_id == agent_id)[0][0]
|
|
except IndexError as ie:
|
|
raise IndexError(
|
|
"agent_id {} is did not request a decision at the previous step".format(
|
|
agent_id
|
|
)
|
|
) from ie
|
|
self._env_actions[agent_group][index] = action
|
|
|
|
def get_step_result(self, agent_group: AgentGroup) -> BatchedStepResult:
|
|
self._assert_group_exists(agent_group)
|
|
return self._env_state[agent_group]
|
|
|
|
def get_agent_group_spec(self, agent_group: AgentGroup) -> AgentGroupSpec:
|
|
self._assert_group_exists(agent_group)
|
|
return self._env_specs[agent_group]
|
|
|
|
def close(self):
|
|
"""
|
|
Sends a shutdown signal to the unity environment, and closes the socket connection.
|
|
"""
|
|
if self._loaded:
|
|
self._close()
|
|
else:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|
|
|
|
def _close(self):
|
|
self._loaded = False
|
|
self.communicator.close()
|
|
if self.proc1 is not None:
|
|
# Wait a bit for the process to shutdown, but kill it if it takes too long
|
|
try:
|
|
self.proc1.wait(timeout=self.timeout_wait)
|
|
signal_name = self.returncode_to_signal_name(self.proc1.returncode)
|
|
signal_name = f" ({signal_name})" if signal_name else ""
|
|
return_info = f"Environment shut down with return code {self.proc1.returncode}{signal_name}."
|
|
logger.info(return_info)
|
|
except subprocess.TimeoutExpired:
|
|
logger.info("Environment timed out shutting down. Killing...")
|
|
self.proc1.kill()
|
|
# Set to None so we don't try to close multiple times.
|
|
self.proc1 = None
|
|
|
|
@classmethod
|
|
def _flatten(cls, arr: Any) -> List[float]:
|
|
"""
|
|
Converts arrays to list.
|
|
:param arr: numpy vector.
|
|
:return: flattened list.
|
|
"""
|
|
if isinstance(arr, cls.SCALAR_ACTION_TYPES):
|
|
arr = [float(arr)]
|
|
if isinstance(arr, np.ndarray):
|
|
arr = arr.tolist()
|
|
if len(arr) == 0:
|
|
return arr
|
|
if isinstance(arr[0], np.ndarray):
|
|
# pylint: disable=no-member
|
|
arr = [item for sublist in arr for item in sublist.tolist()]
|
|
if isinstance(arr[0], list):
|
|
# pylint: disable=not-an-iterable
|
|
arr = [item for sublist in arr for item in sublist]
|
|
arr = [float(x) for x in arr]
|
|
return arr
|
|
|
|
@staticmethod
|
|
def _parse_side_channel_message(
|
|
side_channels: Dict[uuid.UUID, SideChannel], data: bytes
|
|
) -> None:
|
|
offset = 0
|
|
while offset < len(data):
|
|
try:
|
|
channel_id = uuid.UUID(bytes_le=bytes(data[offset : offset + 16]))
|
|
offset += 16
|
|
message_len, = struct.unpack_from("<i", data, offset)
|
|
offset = offset + 4
|
|
message_data = data[offset : offset + message_len]
|
|
offset = offset + message_len
|
|
except Exception:
|
|
raise UnityEnvironmentException(
|
|
"There was a problem reading a message in a SideChannel. "
|
|
"Please make sure the version of MLAgents in Unity is "
|
|
"compatible with the Python version."
|
|
)
|
|
if len(message_data) != message_len:
|
|
raise UnityEnvironmentException(
|
|
"The message received by the side channel {0} was "
|
|
"unexpectedly short. Make sure your Unity Environment "
|
|
"sending side channel data properly.".format(channel_id)
|
|
)
|
|
if channel_id in side_channels:
|
|
incoming_message = IncomingMessage(message_data)
|
|
side_channels[channel_id].on_message_received(incoming_message)
|
|
else:
|
|
logger.warning(
|
|
"Unknown side channel data received. Channel type "
|
|
": {0}.".format(channel_id)
|
|
)
|
|
|
|
@staticmethod
|
|
def _generate_side_channel_data(
|
|
side_channels: Dict[uuid.UUID, SideChannel]
|
|
) -> bytearray:
|
|
result = bytearray()
|
|
for channel_id, channel in side_channels.items():
|
|
for message in channel.message_queue:
|
|
result += channel_id.bytes_le
|
|
result += struct.pack("<i", len(message))
|
|
result += message
|
|
channel.message_queue = []
|
|
return result
|
|
|
|
@timed
|
|
def _generate_step_input(
|
|
self, vector_action: Dict[str, np.ndarray]
|
|
) -> UnityInputProto:
|
|
rl_in = UnityRLInputProto()
|
|
for b in vector_action:
|
|
n_agents = self._env_state[b].n_agents()
|
|
if n_agents == 0:
|
|
continue
|
|
for i in range(n_agents):
|
|
action = AgentActionProto(vector_actions=vector_action[b][i])
|
|
rl_in.agent_actions[b].value.extend([action])
|
|
rl_in.command = STEP
|
|
rl_in.side_channel = bytes(self._generate_side_channel_data(self.side_channels))
|
|
return self.wrap_unity_input(rl_in)
|
|
|
|
def _generate_reset_input(self) -> UnityInputProto:
|
|
rl_in = UnityRLInputProto()
|
|
rl_in.command = RESET
|
|
rl_in.side_channel = bytes(self._generate_side_channel_data(self.side_channels))
|
|
return self.wrap_unity_input(rl_in)
|
|
|
|
def send_academy_parameters(
|
|
self, init_parameters: UnityRLInitializationInputProto
|
|
) -> UnityOutputProto:
|
|
inputs = UnityInputProto()
|
|
inputs.rl_initialization_input.CopyFrom(init_parameters)
|
|
return self.communicator.initialize(inputs)
|
|
|
|
@staticmethod
|
|
def wrap_unity_input(rl_input: UnityRLInputProto) -> UnityInputProto:
|
|
result = UnityInputProto()
|
|
result.rl_input.CopyFrom(rl_input)
|
|
return result
|
|
|
|
@staticmethod
|
|
def returncode_to_signal_name(returncode: int) -> Optional[str]:
|
|
"""
|
|
Try to convert return codes into their corresponding signal name.
|
|
E.g. returncode_to_signal_name(-2) -> "SIGINT"
|
|
"""
|
|
try:
|
|
# A negative value -N indicates that the child was terminated by signal N (POSIX only).
|
|
s = signal.Signals(-returncode) # pylint: disable=no-member
|
|
return s.name
|
|
except Exception:
|
|
# Should generally be a ValueError, but catch everything just in case.
|
|
return None
|