Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
 
 
 
 
 

371 行
12 KiB

import pytest
import yaml
import io
import os
from unittest.mock import patch
from mlagents.trainers import trainer_util
from mlagents.trainers.trainer_util import load_config, _load_config
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.exception import TrainerConfigError, UnityTrainerException
from mlagents.trainers.brain import BrainParameters
@pytest.fixture
def dummy_config():
return yaml.safe_load(
"""
default:
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
@pytest.fixture
def dummy_config_with_override(dummy_config):
base = dummy_config
base["testbrain"] = {}
base["testbrain"]["normalize"] = False
return base
@pytest.fixture
def dummy_bad_config():
return yaml.safe_load(
"""
default:
trainer: incorrect_trainer
brain_to_imitate: ExpertBrain
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
"""
)
@patch("mlagents.trainers.brain.BrainParameters")
def test_initialize_trainer_parameters_override_defaults(
BrainParametersMock, dummy_config_with_override
):
summaries_dir = "test_dir"
run_id = "testrun"
model_path = "model_dir"
keep_checkpoints = 1
train_model = True
load_model = False
seed = 11
expected_reward_buff_cap = 1
base_config = dummy_config_with_override
expected_config = base_config["default"]
expected_config["summary_path"] = f"{run_id}_testbrain"
expected_config["model_path"] = model_path + "/testbrain"
expected_config["keep_checkpoints"] = keep_checkpoints
# Override value from specific brain config
expected_config["normalize"] = False
brain_params_mock = BrainParametersMock()
BrainParametersMock.return_value.brain_name = "testbrain"
external_brains = {"testbrain": brain_params_mock}
def mock_constructor(
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
):
assert brain == brain_params_mock.brain_name
assert trainer_parameters == expected_config
assert reward_buff_cap == expected_reward_buff_cap
assert training == train_model
assert load == load_model
assert seed == seed
assert run_id == run_id
with patch.object(PPOTrainer, "__init__", mock_constructor):
trainer_factory = trainer_util.TrainerFactory(
trainer_config=base_config,
summaries_dir=summaries_dir,
run_id=run_id,
model_path=model_path,
keep_checkpoints=keep_checkpoints,
train_model=train_model,
load_model=load_model,
seed=seed,
)
trainers = {}
for _, brain_parameters in external_brains.items():
trainers["testbrain"] = trainer_factory.generate(
brain_parameters.brain_name
)
assert "testbrain" in trainers
assert isinstance(trainers["testbrain"], PPOTrainer)
@patch("mlagents.trainers.brain.BrainParameters")
def test_initialize_ppo_trainer(BrainParametersMock, dummy_config):
brain_params_mock = BrainParametersMock()
BrainParametersMock.return_value.brain_name = "testbrain"
external_brains = {"testbrain": BrainParametersMock()}
summaries_dir = "test_dir"
run_id = "testrun"
model_path = "model_dir"
keep_checkpoints = 1
train_model = True
load_model = False
seed = 11
expected_reward_buff_cap = 1
base_config = dummy_config
expected_config = base_config["default"]
expected_config["summary_path"] = f"{run_id}_testbrain"
expected_config["model_path"] = model_path + "/testbrain"
expected_config["keep_checkpoints"] = keep_checkpoints
def mock_constructor(
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
):
assert brain == brain_params_mock.brain_name
assert trainer_parameters == expected_config
assert reward_buff_cap == expected_reward_buff_cap
assert training == train_model
assert load == load_model
assert seed == seed
assert run_id == run_id
with patch.object(PPOTrainer, "__init__", mock_constructor):
trainer_factory = trainer_util.TrainerFactory(
trainer_config=base_config,
summaries_dir=summaries_dir,
run_id=run_id,
model_path=model_path,
keep_checkpoints=keep_checkpoints,
train_model=train_model,
load_model=load_model,
seed=seed,
)
trainers = {}
for brain_name, brain_parameters in external_brains.items():
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
assert "testbrain" in trainers
assert isinstance(trainers["testbrain"], PPOTrainer)
@patch("mlagents.trainers.brain.BrainParameters")
def test_initialize_invalid_trainer_raises_exception(
BrainParametersMock, dummy_bad_config
):
summaries_dir = "test_dir"
run_id = "testrun"
model_path = "model_dir"
keep_checkpoints = 1
train_model = True
load_model = False
seed = 11
bad_config = dummy_bad_config
BrainParametersMock.return_value.brain_name = "testbrain"
external_brains = {"testbrain": BrainParametersMock()}
with pytest.raises(TrainerConfigError):
trainer_factory = trainer_util.TrainerFactory(
trainer_config=bad_config,
summaries_dir=summaries_dir,
run_id=run_id,
model_path=model_path,
keep_checkpoints=keep_checkpoints,
train_model=train_model,
load_model=load_model,
seed=seed,
)
trainers = {}
for brain_name, brain_parameters in external_brains.items():
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
# Test no trainer specified
del bad_config["default"]["trainer"]
with pytest.raises(TrainerConfigError):
trainer_factory = trainer_util.TrainerFactory(
trainer_config=bad_config,
summaries_dir=summaries_dir,
run_id=run_id,
model_path=model_path,
keep_checkpoints=keep_checkpoints,
train_model=train_model,
load_model=load_model,
seed=seed,
)
trainers = {}
for brain_name, brain_parameters in external_brains.items():
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
# Test BC trainer specified
bad_config["default"]["trainer"] = "offline_bc"
with pytest.raises(UnityTrainerException):
trainer_factory = trainer_util.TrainerFactory(
trainer_config=bad_config,
summaries_dir=summaries_dir,
run_id=run_id,
model_path=model_path,
keep_checkpoints=keep_checkpoints,
train_model=train_model,
load_model=load_model,
seed=seed,
)
trainers = {}
for brain_name, brain_parameters in external_brains.items():
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
def test_handles_no_default_section(dummy_config):
"""
Make sure the trainer setup handles a missing "default" in the config.
"""
brain_name = "testbrain"
no_default_config = {brain_name: dummy_config["default"]}
brain_parameters = BrainParameters(
brain_name=brain_name,
vector_observation_space_size=1,
camera_resolutions=[],
vector_action_space_size=[2],
vector_action_descriptions=[],
vector_action_space_type=0,
)
trainer_factory = trainer_util.TrainerFactory(
trainer_config=no_default_config,
summaries_dir="test_dir",
run_id="testrun",
model_path="model_dir",
keep_checkpoints=1,
train_model=True,
load_model=False,
seed=42,
)
trainer_factory.generate(brain_parameters.brain_name)
def test_raise_if_no_config_for_brain(dummy_config):
"""
Make sure the trainer setup raises a friendlier exception if both "default" and the brain name
are missing from the config.
"""
brain_name = "testbrain"
bad_config = {"some_other_brain": dummy_config["default"]}
brain_parameters = BrainParameters(
brain_name=brain_name,
vector_observation_space_size=1,
camera_resolutions=[],
vector_action_space_size=[2],
vector_action_descriptions=[],
vector_action_space_type=0,
)
trainer_factory = trainer_util.TrainerFactory(
trainer_config=bad_config,
summaries_dir="test_dir",
run_id="testrun",
model_path="model_dir",
keep_checkpoints=1,
train_model=True,
load_model=False,
seed=42,
)
with pytest.raises(TrainerConfigError):
trainer_factory.generate(brain_parameters)
def test_load_config_missing_file():
with pytest.raises(TrainerConfigError):
load_config("thisFileDefinitelyDoesNotExist.yaml")
def test_load_config_valid_yaml():
file_contents = """
this:
- is fine
"""
fp = io.StringIO(file_contents)
res = _load_config(fp)
assert res == {"this": ["is fine"]}
def test_load_config_invalid_yaml():
file_contents = """
you:
- will
- not
- parse
"""
with pytest.raises(TrainerConfigError):
fp = io.StringIO(file_contents)
_load_config(fp)
def test_existing_directories(tmp_path):
model_path = os.path.join(tmp_path, "runid")
# Unused summary path
summary_path = os.path.join(tmp_path, "runid")
# Test fresh new unused path - should do nothing.
trainer_util.handle_existing_directories(model_path, summary_path, False, False)
# Test resume with fresh path - should throw an exception.
with pytest.raises(UnityTrainerException):
trainer_util.handle_existing_directories(model_path, summary_path, True, False)
# make a directory
os.mkdir(model_path)
# Test try to train w.o. force, should complain
with pytest.raises(UnityTrainerException):
trainer_util.handle_existing_directories(model_path, summary_path, False, False)
# Test try to train w/ resume - should work
trainer_util.handle_existing_directories(model_path, summary_path, True, False)
# Test try to train w/ force - should work
trainer_util.handle_existing_directories(model_path, summary_path, False, True)
# Test initialize option
init_path = os.path.join(tmp_path, "runid2")
with pytest.raises(UnityTrainerException):
trainer_util.handle_existing_directories(
model_path, summary_path, False, True, init_path
)
os.mkdir(init_path)
# Should pass since the directory exists now.
trainer_util.handle_existing_directories(
model_path, summary_path, False, True, init_path
)