371 行
12 KiB
371 行
12 KiB
import pytest
|
|
import yaml
|
|
import io
|
|
import os
|
|
from unittest.mock import patch
|
|
|
|
from mlagents.trainers import trainer_util
|
|
from mlagents.trainers.trainer_util import load_config, _load_config
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.exception import TrainerConfigError, UnityTrainerException
|
|
from mlagents.trainers.brain import BrainParameters
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
default:
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config_with_override(dummy_config):
|
|
base = dummy_config
|
|
base["testbrain"] = {}
|
|
base["testbrain"]["normalize"] = False
|
|
return base
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_bad_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
default:
|
|
trainer: incorrect_trainer
|
|
brain_to_imitate: ExpertBrain
|
|
batches_per_epoch: 16
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
"""
|
|
)
|
|
|
|
|
|
@patch("mlagents.trainers.brain.BrainParameters")
|
|
def test_initialize_trainer_parameters_override_defaults(
|
|
BrainParametersMock, dummy_config_with_override
|
|
):
|
|
summaries_dir = "test_dir"
|
|
run_id = "testrun"
|
|
model_path = "model_dir"
|
|
keep_checkpoints = 1
|
|
train_model = True
|
|
load_model = False
|
|
seed = 11
|
|
expected_reward_buff_cap = 1
|
|
|
|
base_config = dummy_config_with_override
|
|
expected_config = base_config["default"]
|
|
expected_config["summary_path"] = f"{run_id}_testbrain"
|
|
expected_config["model_path"] = model_path + "/testbrain"
|
|
expected_config["keep_checkpoints"] = keep_checkpoints
|
|
|
|
# Override value from specific brain config
|
|
expected_config["normalize"] = False
|
|
|
|
brain_params_mock = BrainParametersMock()
|
|
BrainParametersMock.return_value.brain_name = "testbrain"
|
|
external_brains = {"testbrain": brain_params_mock}
|
|
|
|
def mock_constructor(
|
|
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
|
|
):
|
|
assert brain == brain_params_mock.brain_name
|
|
assert trainer_parameters == expected_config
|
|
assert reward_buff_cap == expected_reward_buff_cap
|
|
assert training == train_model
|
|
assert load == load_model
|
|
assert seed == seed
|
|
assert run_id == run_id
|
|
|
|
with patch.object(PPOTrainer, "__init__", mock_constructor):
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=base_config,
|
|
summaries_dir=summaries_dir,
|
|
run_id=run_id,
|
|
model_path=model_path,
|
|
keep_checkpoints=keep_checkpoints,
|
|
train_model=train_model,
|
|
load_model=load_model,
|
|
seed=seed,
|
|
)
|
|
trainers = {}
|
|
for _, brain_parameters in external_brains.items():
|
|
trainers["testbrain"] = trainer_factory.generate(
|
|
brain_parameters.brain_name
|
|
)
|
|
assert "testbrain" in trainers
|
|
assert isinstance(trainers["testbrain"], PPOTrainer)
|
|
|
|
|
|
@patch("mlagents.trainers.brain.BrainParameters")
|
|
def test_initialize_ppo_trainer(BrainParametersMock, dummy_config):
|
|
brain_params_mock = BrainParametersMock()
|
|
BrainParametersMock.return_value.brain_name = "testbrain"
|
|
external_brains = {"testbrain": BrainParametersMock()}
|
|
summaries_dir = "test_dir"
|
|
run_id = "testrun"
|
|
model_path = "model_dir"
|
|
keep_checkpoints = 1
|
|
train_model = True
|
|
load_model = False
|
|
seed = 11
|
|
expected_reward_buff_cap = 1
|
|
|
|
base_config = dummy_config
|
|
expected_config = base_config["default"]
|
|
expected_config["summary_path"] = f"{run_id}_testbrain"
|
|
expected_config["model_path"] = model_path + "/testbrain"
|
|
expected_config["keep_checkpoints"] = keep_checkpoints
|
|
|
|
def mock_constructor(
|
|
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
|
|
):
|
|
assert brain == brain_params_mock.brain_name
|
|
assert trainer_parameters == expected_config
|
|
assert reward_buff_cap == expected_reward_buff_cap
|
|
assert training == train_model
|
|
assert load == load_model
|
|
assert seed == seed
|
|
assert run_id == run_id
|
|
|
|
with patch.object(PPOTrainer, "__init__", mock_constructor):
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=base_config,
|
|
summaries_dir=summaries_dir,
|
|
run_id=run_id,
|
|
model_path=model_path,
|
|
keep_checkpoints=keep_checkpoints,
|
|
train_model=train_model,
|
|
load_model=load_model,
|
|
seed=seed,
|
|
)
|
|
trainers = {}
|
|
for brain_name, brain_parameters in external_brains.items():
|
|
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
|
|
assert "testbrain" in trainers
|
|
assert isinstance(trainers["testbrain"], PPOTrainer)
|
|
|
|
|
|
@patch("mlagents.trainers.brain.BrainParameters")
|
|
def test_initialize_invalid_trainer_raises_exception(
|
|
BrainParametersMock, dummy_bad_config
|
|
):
|
|
summaries_dir = "test_dir"
|
|
run_id = "testrun"
|
|
model_path = "model_dir"
|
|
keep_checkpoints = 1
|
|
train_model = True
|
|
load_model = False
|
|
seed = 11
|
|
bad_config = dummy_bad_config
|
|
BrainParametersMock.return_value.brain_name = "testbrain"
|
|
external_brains = {"testbrain": BrainParametersMock()}
|
|
|
|
with pytest.raises(TrainerConfigError):
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=bad_config,
|
|
summaries_dir=summaries_dir,
|
|
run_id=run_id,
|
|
model_path=model_path,
|
|
keep_checkpoints=keep_checkpoints,
|
|
train_model=train_model,
|
|
load_model=load_model,
|
|
seed=seed,
|
|
)
|
|
trainers = {}
|
|
for brain_name, brain_parameters in external_brains.items():
|
|
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
|
|
|
|
# Test no trainer specified
|
|
del bad_config["default"]["trainer"]
|
|
with pytest.raises(TrainerConfigError):
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=bad_config,
|
|
summaries_dir=summaries_dir,
|
|
run_id=run_id,
|
|
model_path=model_path,
|
|
keep_checkpoints=keep_checkpoints,
|
|
train_model=train_model,
|
|
load_model=load_model,
|
|
seed=seed,
|
|
)
|
|
trainers = {}
|
|
for brain_name, brain_parameters in external_brains.items():
|
|
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
|
|
|
|
# Test BC trainer specified
|
|
bad_config["default"]["trainer"] = "offline_bc"
|
|
with pytest.raises(UnityTrainerException):
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=bad_config,
|
|
summaries_dir=summaries_dir,
|
|
run_id=run_id,
|
|
model_path=model_path,
|
|
keep_checkpoints=keep_checkpoints,
|
|
train_model=train_model,
|
|
load_model=load_model,
|
|
seed=seed,
|
|
)
|
|
trainers = {}
|
|
for brain_name, brain_parameters in external_brains.items():
|
|
trainers[brain_name] = trainer_factory.generate(brain_parameters.brain_name)
|
|
|
|
|
|
def test_handles_no_default_section(dummy_config):
|
|
"""
|
|
Make sure the trainer setup handles a missing "default" in the config.
|
|
"""
|
|
brain_name = "testbrain"
|
|
no_default_config = {brain_name: dummy_config["default"]}
|
|
brain_parameters = BrainParameters(
|
|
brain_name=brain_name,
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=no_default_config,
|
|
summaries_dir="test_dir",
|
|
run_id="testrun",
|
|
model_path="model_dir",
|
|
keep_checkpoints=1,
|
|
train_model=True,
|
|
load_model=False,
|
|
seed=42,
|
|
)
|
|
trainer_factory.generate(brain_parameters.brain_name)
|
|
|
|
|
|
def test_raise_if_no_config_for_brain(dummy_config):
|
|
"""
|
|
Make sure the trainer setup raises a friendlier exception if both "default" and the brain name
|
|
are missing from the config.
|
|
"""
|
|
brain_name = "testbrain"
|
|
bad_config = {"some_other_brain": dummy_config["default"]}
|
|
brain_parameters = BrainParameters(
|
|
brain_name=brain_name,
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
trainer_factory = trainer_util.TrainerFactory(
|
|
trainer_config=bad_config,
|
|
summaries_dir="test_dir",
|
|
run_id="testrun",
|
|
model_path="model_dir",
|
|
keep_checkpoints=1,
|
|
train_model=True,
|
|
load_model=False,
|
|
seed=42,
|
|
)
|
|
with pytest.raises(TrainerConfigError):
|
|
trainer_factory.generate(brain_parameters)
|
|
|
|
|
|
def test_load_config_missing_file():
|
|
with pytest.raises(TrainerConfigError):
|
|
load_config("thisFileDefinitelyDoesNotExist.yaml")
|
|
|
|
|
|
def test_load_config_valid_yaml():
|
|
file_contents = """
|
|
this:
|
|
- is fine
|
|
"""
|
|
fp = io.StringIO(file_contents)
|
|
res = _load_config(fp)
|
|
assert res == {"this": ["is fine"]}
|
|
|
|
|
|
def test_load_config_invalid_yaml():
|
|
file_contents = """
|
|
you:
|
|
- will
|
|
- not
|
|
- parse
|
|
"""
|
|
with pytest.raises(TrainerConfigError):
|
|
fp = io.StringIO(file_contents)
|
|
_load_config(fp)
|
|
|
|
|
|
def test_existing_directories(tmp_path):
|
|
model_path = os.path.join(tmp_path, "runid")
|
|
# Unused summary path
|
|
summary_path = os.path.join(tmp_path, "runid")
|
|
# Test fresh new unused path - should do nothing.
|
|
trainer_util.handle_existing_directories(model_path, summary_path, False, False)
|
|
# Test resume with fresh path - should throw an exception.
|
|
with pytest.raises(UnityTrainerException):
|
|
trainer_util.handle_existing_directories(model_path, summary_path, True, False)
|
|
|
|
# make a directory
|
|
os.mkdir(model_path)
|
|
# Test try to train w.o. force, should complain
|
|
with pytest.raises(UnityTrainerException):
|
|
trainer_util.handle_existing_directories(model_path, summary_path, False, False)
|
|
# Test try to train w/ resume - should work
|
|
trainer_util.handle_existing_directories(model_path, summary_path, True, False)
|
|
# Test try to train w/ force - should work
|
|
trainer_util.handle_existing_directories(model_path, summary_path, False, True)
|
|
|
|
# Test initialize option
|
|
init_path = os.path.join(tmp_path, "runid2")
|
|
with pytest.raises(UnityTrainerException):
|
|
trainer_util.handle_existing_directories(
|
|
model_path, summary_path, False, True, init_path
|
|
)
|
|
os.mkdir(init_path)
|
|
# Should pass since the directory exists now.
|
|
trainer_util.handle_existing_directories(
|
|
model_path, summary_path, False, True, init_path
|
|
)
|