您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
521 行
17 KiB
521 行
17 KiB
import math
|
|
import tempfile
|
|
import pytest
|
|
import yaml
|
|
import numpy as np
|
|
from typing import Dict, Any
|
|
|
|
from mlagents.trainers.tests.simple_test_envs import (
|
|
SimpleEnvironment,
|
|
MemoryEnvironment,
|
|
RecordEnvironment,
|
|
)
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.trainers.trainer_util import TrainerFactory
|
|
from mlagents.trainers.simple_env_manager import SimpleEnvManager
|
|
from mlagents.trainers.sampler_class import SamplerManager
|
|
from mlagents.trainers.demo_loader import write_demo
|
|
from mlagents.trainers.stats import StatsReporter, StatsWriter, StatsSummary
|
|
from mlagents_envs.side_channel.environment_parameters_channel import (
|
|
EnvironmentParametersChannel,
|
|
)
|
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous
|
|
|
|
BRAIN_NAME = "1D"
|
|
|
|
PPO_CONFIG = f"""
|
|
{BRAIN_NAME}:
|
|
trainer: ppo
|
|
batch_size: 16
|
|
beta: 5.0e-3
|
|
buffer_size: 64
|
|
epsilon: 0.2
|
|
hidden_units: 32
|
|
lambd: 0.95
|
|
learning_rate: 5.0e-3
|
|
learning_rate_schedule: constant
|
|
max_steps: 3000
|
|
memory_size: 16
|
|
normalize: false
|
|
num_epoch: 3
|
|
num_layers: 1
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 500
|
|
use_recurrent: false
|
|
threaded: false
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
|
|
SAC_CONFIG = f"""
|
|
{BRAIN_NAME}:
|
|
trainer: sac
|
|
batch_size: 8
|
|
buffer_size: 5000
|
|
buffer_init_steps: 100
|
|
hidden_units: 16
|
|
init_entcoef: 0.01
|
|
learning_rate: 5.0e-3
|
|
max_steps: 1000
|
|
memory_size: 16
|
|
normalize: false
|
|
steps_per_update: 1
|
|
num_layers: 1
|
|
time_horizon: 64
|
|
sequence_length: 32
|
|
summary_freq: 100
|
|
tau: 0.01
|
|
use_recurrent: false
|
|
curiosity_enc_size: 128
|
|
demo_path: None
|
|
vis_encode_type: simple
|
|
threaded: false
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
|
|
|
|
def generate_config(
|
|
config: str, override_vals: Dict[str, Any] = None
|
|
) -> Dict[str, Any]:
|
|
trainer_config = yaml.safe_load(config)
|
|
if override_vals is not None:
|
|
trainer_config[BRAIN_NAME].update(override_vals)
|
|
return trainer_config
|
|
|
|
|
|
# The reward processor is passed as an argument to _check_environment_trains.
|
|
# It is applied to the list pf all final rewards for each brain individually.
|
|
# This is so that we can process all final rewards in different ways for different algorithms.
|
|
# Custom reward processors shuld be built within the test function and passed to _check_environment_trains
|
|
# Default is average over the last 5 final rewards
|
|
def default_reward_processor(rewards, last_n_rewards=5):
|
|
rewards_to_use = rewards[-last_n_rewards:]
|
|
# For debugging tests
|
|
print(f"Last {last_n_rewards} rewards:", rewards_to_use)
|
|
return np.array(rewards[-last_n_rewards:], dtype=np.float32).mean()
|
|
|
|
|
|
class DebugWriter(StatsWriter):
|
|
"""
|
|
Print to stdout so stats can be viewed in pytest
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._last_reward_summary: Dict[str, float] = {}
|
|
|
|
def get_last_rewards(self):
|
|
return self._last_reward_summary
|
|
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
for val, stats_summary in values.items():
|
|
if val == "Environment/Cumulative Reward":
|
|
print(step, val, stats_summary.mean)
|
|
self._last_reward_summary[category] = stats_summary.mean
|
|
|
|
|
|
def _check_environment_trains(
|
|
env,
|
|
trainer_config,
|
|
reward_processor=default_reward_processor,
|
|
meta_curriculum=None,
|
|
success_threshold=0.9,
|
|
env_manager=None,
|
|
):
|
|
# Create controller and begin training.
|
|
with tempfile.TemporaryDirectory() as dir:
|
|
run_id = "id"
|
|
save_freq = 99999
|
|
seed = 1337
|
|
StatsReporter.writers.clear() # Clear StatsReporters so we don't write to file
|
|
debug_writer = DebugWriter()
|
|
StatsReporter.add_writer(debug_writer)
|
|
# Make sure threading is turned off for determinism
|
|
trainer_config["threading"] = False
|
|
if env_manager is None:
|
|
env_manager = SimpleEnvManager(env, EnvironmentParametersChannel())
|
|
trainer_factory = TrainerFactory(
|
|
trainer_config=trainer_config,
|
|
summaries_dir=dir,
|
|
run_id=run_id,
|
|
model_path=dir,
|
|
keep_checkpoints=1,
|
|
train_model=True,
|
|
load_model=False,
|
|
seed=seed,
|
|
meta_curriculum=meta_curriculum,
|
|
multi_gpu=False,
|
|
)
|
|
|
|
tc = TrainerController(
|
|
trainer_factory=trainer_factory,
|
|
summaries_dir=dir,
|
|
model_path=dir,
|
|
run_id=run_id,
|
|
meta_curriculum=meta_curriculum,
|
|
train=True,
|
|
training_seed=seed,
|
|
sampler_manager=SamplerManager(None),
|
|
resampling_interval=None,
|
|
save_freq=save_freq,
|
|
)
|
|
|
|
# Begin training
|
|
tc.start_learning(env_manager)
|
|
if (
|
|
success_threshold is not None
|
|
): # For tests where we are just checking setup and not reward
|
|
processed_rewards = [
|
|
reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
]
|
|
assert all(not math.isnan(reward) for reward in processed_rewards)
|
|
assert all(reward > success_threshold for reward in processed_rewards)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_ppo(use_discrete):
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
config = generate_config(PPO_CONFIG)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_2d_ppo(use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.5
|
|
)
|
|
config = generate_config(PPO_CONFIG)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
def test_visual_ppo(num_visual, use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
use_discrete=use_discrete,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.2,
|
|
)
|
|
override_vals = {"learning_rate": 3.0e-4}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn"])
|
|
def test_visual_advanced_ppo(vis_encode_type, num_visual):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
use_discrete=True,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.5,
|
|
vis_obs_size=(36, 36, 3),
|
|
)
|
|
override_vals = {
|
|
"learning_rate": 3.0e-4,
|
|
"vis_encode_type": vis_encode_type,
|
|
"max_steps": 500,
|
|
"summary_freq": 100,
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
# The number of steps is pretty small for these encoders
|
|
_check_environment_trains(env, config, success_threshold=0.5)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_recurrent_ppo(use_discrete):
|
|
env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
override_vals = {
|
|
"max_steps": 5000,
|
|
"batch_size": 64,
|
|
"buffer_size": 128,
|
|
"learning_rate": 1e-3,
|
|
"use_recurrent": True,
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_sac(use_discrete):
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
config = generate_config(SAC_CONFIG)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_2d_sac(use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8
|
|
)
|
|
override_vals = {"buffer_init_steps": 2000, "max_steps": 10000}
|
|
config = generate_config(SAC_CONFIG, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=0.8)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
def test_visual_sac(num_visual, use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
use_discrete=use_discrete,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.2,
|
|
)
|
|
override_vals = {"batch_size": 16, "learning_rate": 3e-4}
|
|
config = generate_config(SAC_CONFIG, override_vals)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn"])
|
|
def test_visual_advanced_sac(vis_encode_type, num_visual):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
use_discrete=True,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.5,
|
|
vis_obs_size=(36, 36, 3),
|
|
)
|
|
override_vals = {
|
|
"batch_size": 16,
|
|
"learning_rate": 3.0e-4,
|
|
"vis_encode_type": vis_encode_type,
|
|
"buffer_init_steps": 0,
|
|
"max_steps": 100,
|
|
}
|
|
config = generate_config(SAC_CONFIG, override_vals)
|
|
# The number of steps is pretty small for these encoders
|
|
_check_environment_trains(env, config, success_threshold=0.5)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_recurrent_sac(use_discrete):
|
|
env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
override_vals = {
|
|
"batch_size": 64,
|
|
"use_recurrent": True,
|
|
"max_steps": 5000,
|
|
"learning_rate": 1e-3,
|
|
"buffer_init_steps": 500,
|
|
"steps_per_update": 2,
|
|
}
|
|
config = generate_config(SAC_CONFIG, override_vals)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_ghost(use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete
|
|
)
|
|
override_vals = {
|
|
"max_steps": 2500,
|
|
"self_play": {
|
|
"play_against_latest_model_ratio": 1.0,
|
|
"save_steps": 2000,
|
|
"swap_steps": 2000,
|
|
},
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_ghost_fails(use_discrete):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete
|
|
)
|
|
# This config should fail because the ghosted policy is never swapped with a competent policy.
|
|
# Swap occurs after max step is reached.
|
|
override_vals = {
|
|
"max_steps": 2500,
|
|
"self_play": {
|
|
"play_against_latest_model_ratio": 1.0,
|
|
"save_steps": 2000,
|
|
"swap_steps": 4000,
|
|
},
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=None)
|
|
processed_rewards = [
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
]
|
|
success_threshold = 0.9
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
reward < success_threshold for reward in processed_rewards
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_asymm_ghost(use_discrete):
|
|
# Make opponent for asymmetric case
|
|
brain_name_opp = BRAIN_NAME + "Opp"
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete
|
|
)
|
|
override_vals = {
|
|
"max_steps": 4000,
|
|
"self_play": {
|
|
"play_against_latest_model_ratio": 1.0,
|
|
"save_steps": 10000,
|
|
"swap_steps": 10000,
|
|
"team_change": 4000,
|
|
},
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
config[brain_name_opp] = config[BRAIN_NAME]
|
|
_check_environment_trains(env, config)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_simple_asymm_ghost_fails(use_discrete):
|
|
# Make opponent for asymmetric case
|
|
brain_name_opp = BRAIN_NAME + "Opp"
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete
|
|
)
|
|
# This config should fail because the team that us not learning when both have reached
|
|
# max step should be executing the initial, untrained poliy.
|
|
override_vals = {
|
|
"max_steps": 2000,
|
|
"self_play": {
|
|
"play_against_latest_model_ratio": 0.0,
|
|
"save_steps": 5000,
|
|
"swap_steps": 5000,
|
|
"team_change": 2000,
|
|
},
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
config[brain_name_opp] = config[BRAIN_NAME]
|
|
_check_environment_trains(env, config, success_threshold=None)
|
|
processed_rewards = [
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
]
|
|
success_threshold = 0.9
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
reward < success_threshold for reward in processed_rewards
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def simple_record(tmpdir_factory):
|
|
def record_demo(use_discrete, num_visual=0, num_vector=1):
|
|
env = RecordEnvironment(
|
|
[BRAIN_NAME],
|
|
use_discrete=use_discrete,
|
|
num_visual=num_visual,
|
|
num_vector=num_vector,
|
|
n_demos=100,
|
|
)
|
|
# If we want to use true demos, we can solve the env in the usual way
|
|
# Otherwise, we can just call solve to execute the optimal policy
|
|
env.solve()
|
|
agent_info_protos = env.demonstration_protos[BRAIN_NAME]
|
|
meta_data_proto = DemonstrationMetaProto()
|
|
brain_param_proto = BrainParametersProto(
|
|
vector_action_size=[2] if use_discrete else [1],
|
|
vector_action_descriptions=[""],
|
|
vector_action_space_type=discrete if use_discrete else continuous,
|
|
brain_name=BRAIN_NAME,
|
|
is_training=True,
|
|
)
|
|
action_type = "Discrete" if use_discrete else "Continuous"
|
|
demo_path_name = "1DTest" + action_type + ".demo"
|
|
demo_path = str(tmpdir_factory.mktemp("tmp_demo").join(demo_path_name))
|
|
write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos)
|
|
return demo_path
|
|
|
|
return record_demo
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
@pytest.mark.parametrize("trainer_config", [PPO_CONFIG, SAC_CONFIG])
|
|
def test_gail(simple_record, use_discrete, trainer_config):
|
|
demo_path = simple_record(use_discrete)
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete, step_size=0.2)
|
|
override_vals = {
|
|
"max_steps": 500,
|
|
"behavioral_cloning": {"demo_path": demo_path, "strength": 1.0, "steps": 1000},
|
|
"reward_signals": {
|
|
"gail": {
|
|
"strength": 1.0,
|
|
"gamma": 0.99,
|
|
"encoding_size": 32,
|
|
"demo_path": demo_path,
|
|
}
|
|
},
|
|
}
|
|
config = generate_config(trainer_config, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_gail_visual_ppo(simple_record, use_discrete):
|
|
demo_path = simple_record(use_discrete, num_visual=1, num_vector=0)
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
num_visual=1,
|
|
num_vector=0,
|
|
use_discrete=use_discrete,
|
|
step_size=0.2,
|
|
)
|
|
override_vals = {
|
|
"max_steps": 750,
|
|
"learning_rate": 3.0e-4,
|
|
"behavioral_cloning": {"demo_path": demo_path, "strength": 1.0, "steps": 1000},
|
|
"reward_signals": {
|
|
"gail": {
|
|
"strength": 1.0,
|
|
"gamma": 0.99,
|
|
"encoding_size": 32,
|
|
"demo_path": demo_path,
|
|
}
|
|
},
|
|
}
|
|
config = generate_config(PPO_CONFIG, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_gail_visual_sac(simple_record, use_discrete):
|
|
demo_path = simple_record(use_discrete, num_visual=1, num_vector=0)
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
num_visual=1,
|
|
num_vector=0,
|
|
use_discrete=use_discrete,
|
|
step_size=0.2,
|
|
)
|
|
override_vals = {
|
|
"max_steps": 500,
|
|
"batch_size": 16,
|
|
"learning_rate": 3.0e-4,
|
|
"behavioral_cloning": {"demo_path": demo_path, "strength": 1.0, "steps": 1000},
|
|
"reward_signals": {
|
|
"gail": {
|
|
"strength": 1.0,
|
|
"gamma": 0.99,
|
|
"encoding_size": 32,
|
|
"demo_path": demo_path,
|
|
}
|
|
},
|
|
}
|
|
config = generate_config(SAC_CONFIG, override_vals)
|
|
_check_environment_trains(env, config, success_threshold=0.9)
|