您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
387 行
15 KiB
387 行
15 KiB
# ## ML-Agent Learning (SAC)
|
|
# Contains an implementation of SAC as described in https://arxiv.org/abs/1801.01290
|
|
# and implemented in https://github.com/hill-a/stable-baselines
|
|
|
|
from collections import defaultdict
|
|
from typing import Dict
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.policy.nn_policy import NNPolicy
|
|
from mlagents.trainers.sac.optimizer import SACOptimizer
|
|
from mlagents.trainers.trainer.rl_trainer import RLTrainer
|
|
from mlagents.trainers.trajectory import Trajectory, SplitObservations
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
BUFFER_TRUNCATE_PERCENT = 0.8
|
|
DEFAULT_STEPS_PER_UPDATE = 1
|
|
|
|
|
|
class SACTrainer(RLTrainer):
|
|
"""
|
|
The SACTrainer is an implementation of the SAC algorithm, with support
|
|
for discrete actions and recurrent networks.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
brain_name: str,
|
|
reward_buff_cap: int,
|
|
trainer_parameters: dict,
|
|
training: bool,
|
|
load: bool,
|
|
seed: int,
|
|
run_id: str,
|
|
):
|
|
"""
|
|
Responsible for collecting experiences and training SAC model.
|
|
:param brain_name: The name of the brain associated with trainer config
|
|
:param reward_buff_cap: Max reward history to track in the reward buffer
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
:param load: Whether the model should be loaded.
|
|
:param seed: The seed the model will be initialized with
|
|
:param run_id: The The identifier of the current run
|
|
"""
|
|
super().__init__(
|
|
brain_name, trainer_parameters, training, run_id, reward_buff_cap
|
|
)
|
|
self.param_keys = [
|
|
"batch_size",
|
|
"buffer_size",
|
|
"buffer_init_steps",
|
|
"hidden_units",
|
|
"learning_rate",
|
|
"init_entcoef",
|
|
"max_steps",
|
|
"normalize",
|
|
"num_layers",
|
|
"time_horizon",
|
|
"steps_per_update",
|
|
"sequence_length",
|
|
"summary_freq",
|
|
"tau",
|
|
"use_recurrent",
|
|
"summary_path",
|
|
"memory_size",
|
|
"model_path",
|
|
"reward_signals",
|
|
]
|
|
|
|
self._check_param_keys()
|
|
self.load = load
|
|
self.seed = seed
|
|
self.policy: NNPolicy = None # type: ignore
|
|
self.optimizer: SACOptimizer = None # type: ignore
|
|
|
|
self.step = 0
|
|
|
|
# Don't count buffer_init_steps in steps_per_update ratio, but also don't divide-by-0
|
|
self.update_steps = max(1, self.trainer_parameters["buffer_init_steps"])
|
|
self.reward_signal_update_steps = max(
|
|
1, self.trainer_parameters["buffer_init_steps"]
|
|
)
|
|
|
|
self.steps_per_update = (
|
|
trainer_parameters["steps_per_update"]
|
|
if "steps_per_update" in trainer_parameters
|
|
else DEFAULT_STEPS_PER_UPDATE
|
|
)
|
|
self.reward_signal_steps_per_update = (
|
|
trainer_parameters["reward_signals"]["reward_signal_steps_per_update"]
|
|
if "reward_signal_steps_per_update" in trainer_parameters["reward_signals"]
|
|
else self.steps_per_update
|
|
)
|
|
|
|
self.checkpoint_replay_buffer = (
|
|
trainer_parameters["save_replay_buffer"]
|
|
if "save_replay_buffer" in trainer_parameters
|
|
else False
|
|
)
|
|
|
|
def _check_param_keys(self):
|
|
super()._check_param_keys()
|
|
# Check that batch size is greater than sequence length. Else, throw
|
|
# an exception.
|
|
if (
|
|
self.trainer_parameters["sequence_length"]
|
|
> self.trainer_parameters["batch_size"]
|
|
and self.trainer_parameters["use_recurrent"]
|
|
):
|
|
raise UnityTrainerException(
|
|
"batch_size must be greater than or equal to sequence_length when use_recurrent is True."
|
|
)
|
|
|
|
def save_model(self, name_behavior_id: str) -> None:
|
|
"""
|
|
Saves the model. Overrides the default save_model since we want to save
|
|
the replay buffer as well.
|
|
"""
|
|
self.policy.save_model(self.get_step)
|
|
if self.checkpoint_replay_buffer:
|
|
self.save_replay_buffer()
|
|
|
|
def save_replay_buffer(self) -> None:
|
|
"""
|
|
Save the training buffer's update buffer to a pickle file.
|
|
"""
|
|
filename = os.path.join(
|
|
self.trainer_parameters["model_path"], "last_replay_buffer.hdf5"
|
|
)
|
|
logger.info(f"Saving Experience Replay Buffer to {filename}")
|
|
with open(filename, "wb") as file_object:
|
|
self.update_buffer.save_to_file(file_object)
|
|
|
|
def load_replay_buffer(self) -> None:
|
|
"""
|
|
Loads the last saved replay buffer from a file.
|
|
"""
|
|
filename = os.path.join(
|
|
self.trainer_parameters["model_path"], "last_replay_buffer.hdf5"
|
|
)
|
|
logger.info(f"Loading Experience Replay Buffer from {filename}")
|
|
with open(filename, "rb+") as file_object:
|
|
self.update_buffer.load_from_file(file_object)
|
|
logger.info(
|
|
"Experience replay buffer has {} experiences.".format(
|
|
self.update_buffer.num_experiences
|
|
)
|
|
)
|
|
|
|
def _process_trajectory(self, trajectory: Trajectory) -> None:
|
|
"""
|
|
Takes a trajectory and processes it, putting it into the replay buffer.
|
|
"""
|
|
super()._process_trajectory(trajectory)
|
|
last_step = trajectory.steps[-1]
|
|
agent_id = trajectory.agent_id # All the agents should have the same ID
|
|
|
|
agent_buffer_trajectory = trajectory.to_agentbuffer()
|
|
|
|
# Update the normalization
|
|
if self.is_training:
|
|
self.policy.update_normalization(agent_buffer_trajectory["vector_obs"])
|
|
|
|
# Evaluate all reward functions for reporting purposes
|
|
self.collected_rewards["environment"][agent_id] += np.sum(
|
|
agent_buffer_trajectory["environment_rewards"]
|
|
)
|
|
for name, reward_signal in self.optimizer.reward_signals.items():
|
|
evaluate_result = reward_signal.evaluate_batch(
|
|
agent_buffer_trajectory
|
|
).scaled_reward
|
|
# Report the reward signals
|
|
self.collected_rewards[name][agent_id] += np.sum(evaluate_result)
|
|
|
|
# Get all value estimates for reporting purposes
|
|
value_estimates, _ = self.optimizer.get_trajectory_value_estimates(
|
|
agent_buffer_trajectory, trajectory.next_obs, trajectory.done_reached
|
|
)
|
|
for name, v in value_estimates.items():
|
|
self._stats_reporter.add_stat(
|
|
self.optimizer.reward_signals[name].value_name, np.mean(v)
|
|
)
|
|
|
|
# Bootstrap using the last step rather than the bootstrap step if max step is reached.
|
|
# Set last element to duplicate obs and remove dones.
|
|
if last_step.max_step:
|
|
vec_vis_obs = SplitObservations.from_observations(last_step.obs)
|
|
for i, obs in enumerate(vec_vis_obs.visual_observations):
|
|
agent_buffer_trajectory["next_visual_obs%d" % i][-1] = obs
|
|
if vec_vis_obs.vector_observations.size > 1:
|
|
agent_buffer_trajectory["next_vector_in"][
|
|
-1
|
|
] = vec_vis_obs.vector_observations
|
|
agent_buffer_trajectory["done"][-1] = False
|
|
|
|
# Append to update buffer
|
|
agent_buffer_trajectory.resequence_and_append(
|
|
self.update_buffer, training_length=self.policy.sequence_length
|
|
)
|
|
|
|
if trajectory.done_reached:
|
|
self._update_end_episode_stats(agent_id, self.optimizer)
|
|
|
|
def _is_ready_update(self) -> bool:
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not _update_policy() can be run
|
|
"""
|
|
return (
|
|
self.update_buffer.num_experiences >= self.trainer_parameters["batch_size"]
|
|
and self.step >= self.trainer_parameters["buffer_init_steps"]
|
|
)
|
|
|
|
@timed
|
|
def _update_policy(self) -> bool:
|
|
"""
|
|
Update the SAC policy and reward signals. The reward signal generators are updated using different mini batches.
|
|
By default we imitate http://arxiv.org/abs/1809.02925 and similar papers, where the policy is updated
|
|
N times, then the reward signals are updated N times.
|
|
:return: Whether or not the policy was updated.
|
|
"""
|
|
policy_was_updated = self._update_sac_policy()
|
|
self._update_reward_signals()
|
|
return policy_was_updated
|
|
|
|
def create_policy(
|
|
self, parsed_behavior_id: BehaviorIdentifiers, brain_parameters: BrainParameters
|
|
) -> TFPolicy:
|
|
policy = NNPolicy(
|
|
self.seed,
|
|
brain_parameters,
|
|
self.trainer_parameters,
|
|
self.is_training,
|
|
self.load,
|
|
tanh_squash=True,
|
|
reparameterize=True,
|
|
create_tf_graph=False,
|
|
)
|
|
# Load the replay buffer if load
|
|
if self.load and self.checkpoint_replay_buffer:
|
|
try:
|
|
self.load_replay_buffer()
|
|
except (AttributeError, FileNotFoundError):
|
|
logger.warning(
|
|
"Replay buffer was unable to load, starting from scratch."
|
|
)
|
|
logger.debug(
|
|
"Loaded update buffer with {} sequences".format(
|
|
self.update_buffer.num_experiences
|
|
)
|
|
)
|
|
|
|
return policy
|
|
|
|
def _update_sac_policy(self) -> bool:
|
|
"""
|
|
Uses update_buffer to update the policy. We sample the update_buffer and update
|
|
until the steps_per_update ratio is met.
|
|
"""
|
|
has_updated = False
|
|
self.cumulative_returns_since_policy_update.clear()
|
|
n_sequences = max(
|
|
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
|
|
)
|
|
|
|
batch_update_stats: Dict[str, list] = defaultdict(list)
|
|
while self.step / self.update_steps > self.steps_per_update:
|
|
logger.debug(f"Updating SAC policy at step {self.step}")
|
|
buffer = self.update_buffer
|
|
if (
|
|
self.update_buffer.num_experiences
|
|
>= self.trainer_parameters["batch_size"]
|
|
):
|
|
sampled_minibatch = buffer.sample_mini_batch(
|
|
self.trainer_parameters["batch_size"],
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
# Get rewards for each reward
|
|
for name, signal in self.optimizer.reward_signals.items():
|
|
sampled_minibatch[f"{name}_rewards"] = signal.evaluate_batch(
|
|
sampled_minibatch
|
|
).scaled_reward
|
|
|
|
update_stats = self.optimizer.update(sampled_minibatch, n_sequences)
|
|
for stat_name, value in update_stats.items():
|
|
batch_update_stats[stat_name].append(value)
|
|
|
|
self.update_steps += 1
|
|
|
|
for stat, stat_list in batch_update_stats.items():
|
|
self._stats_reporter.add_stat(stat, np.mean(stat_list))
|
|
has_updated = True
|
|
|
|
if self.optimizer.bc_module:
|
|
update_stats = self.optimizer.bc_module.update()
|
|
for stat, val in update_stats.items():
|
|
self._stats_reporter.add_stat(stat, val)
|
|
|
|
# Truncate update buffer if neccessary. Truncate more than we need to to avoid truncating
|
|
# a large buffer at each update.
|
|
if self.update_buffer.num_experiences > self.trainer_parameters["buffer_size"]:
|
|
self.update_buffer.truncate(
|
|
int(self.trainer_parameters["buffer_size"] * BUFFER_TRUNCATE_PERCENT)
|
|
)
|
|
return has_updated
|
|
|
|
def _update_reward_signals(self) -> None:
|
|
"""
|
|
Iterate through the reward signals and update them. Unlike in PPO,
|
|
do it separate from the policy so that it can be done at a different
|
|
interval.
|
|
This function should only be used to simulate
|
|
http://arxiv.org/abs/1809.02925 and similar papers, where the policy is updated
|
|
N times, then the reward signals are updated N times. Normally, the reward signal
|
|
and policy are updated in parallel.
|
|
"""
|
|
buffer = self.update_buffer
|
|
n_sequences = max(
|
|
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
|
|
)
|
|
batch_update_stats: Dict[str, list] = defaultdict(list)
|
|
while (
|
|
self.step / self.reward_signal_update_steps
|
|
> self.reward_signal_steps_per_update
|
|
):
|
|
# Get minibatches for reward signal update if needed
|
|
reward_signal_minibatches = {}
|
|
for name, signal in self.optimizer.reward_signals.items():
|
|
logger.debug(f"Updating {name} at step {self.step}")
|
|
# Some signals don't need a minibatch to be sampled - so we don't!
|
|
if signal.update_dict:
|
|
reward_signal_minibatches[name] = buffer.sample_mini_batch(
|
|
self.trainer_parameters["batch_size"],
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
update_stats = self.optimizer.update_reward_signals(
|
|
reward_signal_minibatches, n_sequences
|
|
)
|
|
for stat_name, value in update_stats.items():
|
|
batch_update_stats[stat_name].append(value)
|
|
self.reward_signal_update_steps += 1
|
|
|
|
for stat, stat_list in batch_update_stats.items():
|
|
self._stats_reporter.add_stat(stat, np.mean(stat_list))
|
|
|
|
def add_policy(
|
|
self, parsed_behavior_id: BehaviorIdentifiers, policy: TFPolicy
|
|
) -> None:
|
|
"""
|
|
Adds policy to trainer.
|
|
:param brain_parameters: specifications for policy construction
|
|
"""
|
|
if self.policy:
|
|
logger.warning(
|
|
"Your environment contains multiple teams, but {} doesn't support adversarial games. Enable self-play to \
|
|
train adversarial games.".format(
|
|
self.__class__.__name__
|
|
)
|
|
)
|
|
if not isinstance(policy, NNPolicy):
|
|
raise RuntimeError("Non-SACPolicy passed to SACTrainer.add_policy()")
|
|
self.policy = policy
|
|
self.optimizer = SACOptimizer(self.policy, self.trainer_parameters)
|
|
for _reward_signal in self.optimizer.reward_signals.keys():
|
|
self.collected_rewards[_reward_signal] = defaultdict(lambda: 0)
|
|
# Needed to resume loads properly
|
|
self.step = policy.get_current_step()
|
|
self.next_summary_step = self._get_next_summary_step()
|
|
|
|
def get_policy(self, name_behavior_id: str) -> TFPolicy:
|
|
"""
|
|
Gets policy from trainer associated with name_behavior_id
|
|
:param name_behavior_id: full identifier of policy
|
|
"""
|
|
|
|
return self.policy
|