您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
480 行
19 KiB
480 行
19 KiB
from typing import Any, Dict, List, Optional
|
|
import abc
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
from mlagents import tf_utils
|
|
from mlagents_envs.exception import UnityException
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.action_info import ActionInfo
|
|
from mlagents.trainers.trajectory import SplitObservations
|
|
from mlagents.trainers.brain_conversion_utils import get_global_agent_id
|
|
from mlagents_envs.base_env import DecisionSteps
|
|
from mlagents.trainers.models import ModelUtils
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class UnityPolicyException(UnityException):
|
|
"""
|
|
Related to errors with the Trainer.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class TFPolicy(Policy):
|
|
"""
|
|
Contains a learning model, and the necessary
|
|
functions to save/load models and create the input placeholders.
|
|
"""
|
|
|
|
def __init__(self, seed, brain, trainer_parameters, load=False):
|
|
"""
|
|
Initialized the policy.
|
|
:param seed: Random seed to use for TensorFlow.
|
|
:param brain: The corresponding Brain for this policy.
|
|
:param trainer_parameters: The trainer parameters.
|
|
"""
|
|
self._version_number_ = 2
|
|
self.m_size = 0
|
|
|
|
# for ghost trainer save/load snapshots
|
|
self.assign_phs = []
|
|
self.assign_ops = []
|
|
|
|
self.inference_dict = {}
|
|
self.update_dict = {}
|
|
self.sequence_length = 1
|
|
self.seed = seed
|
|
self.brain = brain
|
|
|
|
self.act_size = brain.vector_action_space_size
|
|
self.vec_obs_size = brain.vector_observation_space_size
|
|
self.vis_obs_size = brain.number_visual_observations
|
|
|
|
self.use_recurrent = trainer_parameters["use_recurrent"]
|
|
self.memory_dict: Dict[str, np.ndarray] = {}
|
|
self.num_branches = len(self.brain.vector_action_space_size)
|
|
self.previous_action_dict: Dict[str, np.array] = {}
|
|
self.normalize = trainer_parameters.get("normalize", False)
|
|
self.use_continuous_act = brain.vector_action_space_type == "continuous"
|
|
if self.use_continuous_act:
|
|
self.num_branches = self.brain.vector_action_space_size[0]
|
|
self.model_path = trainer_parameters["model_path"]
|
|
self.initialize_path = trainer_parameters.get("init_path", None)
|
|
self.keep_checkpoints = trainer_parameters.get("keep_checkpoints", 5)
|
|
self.graph = tf.Graph()
|
|
self.sess = tf.Session(
|
|
config=tf_utils.generate_session_config(), graph=self.graph
|
|
)
|
|
self.saver = None
|
|
self.seed = seed
|
|
if self.use_recurrent:
|
|
self.m_size = trainer_parameters["memory_size"]
|
|
self.sequence_length = trainer_parameters["sequence_length"]
|
|
if self.m_size == 0:
|
|
raise UnityPolicyException(
|
|
"The memory size for brain {} is 0 even "
|
|
"though the trainer uses recurrent.".format(brain.brain_name)
|
|
)
|
|
elif self.m_size % 2 != 0:
|
|
raise UnityPolicyException(
|
|
"The memory size for brain {} is {} "
|
|
"but it must be divisible by 2.".format(
|
|
brain.brain_name, self.m_size
|
|
)
|
|
)
|
|
self._initialize_tensorflow_references()
|
|
self.load = load
|
|
|
|
@abc.abstractmethod
|
|
def get_trainable_variables(self) -> List[tf.Variable]:
|
|
"""
|
|
Returns a List of the trainable variables in this policy. if create_tf_graph hasn't been called,
|
|
returns empty list.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def create_tf_graph(self):
|
|
"""
|
|
Builds the tensorflow graph needed for this policy.
|
|
"""
|
|
pass
|
|
|
|
def _initialize_graph(self):
|
|
with self.graph.as_default():
|
|
self.saver = tf.train.Saver(max_to_keep=self.keep_checkpoints)
|
|
init = tf.global_variables_initializer()
|
|
self.sess.run(init)
|
|
|
|
def _load_graph(self, model_path: str, reset_global_steps: bool = False) -> None:
|
|
with self.graph.as_default():
|
|
self.saver = tf.train.Saver(max_to_keep=self.keep_checkpoints)
|
|
logger.info(
|
|
"Loading model for brain {} from {}.".format(
|
|
self.brain.brain_name, model_path
|
|
)
|
|
)
|
|
ckpt = tf.train.get_checkpoint_state(model_path)
|
|
if ckpt is None:
|
|
raise UnityPolicyException(
|
|
"The model {} could not be loaded. Make "
|
|
"sure you specified the right "
|
|
"--run-id and that the previous run you are loading from had the same "
|
|
"behavior names.".format(model_path)
|
|
)
|
|
try:
|
|
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
|
|
except tf.errors.NotFoundError:
|
|
raise UnityPolicyException(
|
|
"The model {} was found but could not be loaded. Make "
|
|
"sure the model is from the same version of ML-Agents, has the same behavior parameters, "
|
|
"and is using the same trainer configuration as the current run.".format(
|
|
model_path
|
|
)
|
|
)
|
|
if reset_global_steps:
|
|
self._set_step(0)
|
|
logger.info(
|
|
"Starting training from step 0 and saving to {}.".format(
|
|
self.model_path
|
|
)
|
|
)
|
|
else:
|
|
logger.info(f"Resuming training from step {self.get_current_step()}.")
|
|
|
|
def initialize_or_load(self):
|
|
# If there is an initialize path, load from that. Else, load from the set model path.
|
|
# If load is set to True, don't reset steps to 0. Else, do. This allows a user to,
|
|
# e.g., resume from an initialize path.
|
|
reset_steps = not self.load
|
|
if self.initialize_path is not None:
|
|
self._load_graph(self.initialize_path, reset_global_steps=reset_steps)
|
|
elif self.load:
|
|
self._load_graph(self.model_path, reset_global_steps=reset_steps)
|
|
else:
|
|
self._initialize_graph()
|
|
|
|
def get_weights(self):
|
|
with self.graph.as_default():
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
values = [v.eval(session=self.sess) for v in _vars]
|
|
return values
|
|
|
|
def init_load_weights(self):
|
|
with self.graph.as_default():
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
values = [v.eval(session=self.sess) for v in _vars]
|
|
for var, value in zip(_vars, values):
|
|
assign_ph = tf.placeholder(var.dtype, shape=value.shape)
|
|
self.assign_phs.append(assign_ph)
|
|
self.assign_ops.append(tf.assign(var, assign_ph))
|
|
|
|
def load_weights(self, values):
|
|
if len(self.assign_ops) == 0:
|
|
logger.warning(
|
|
"Calling load_weights in tf_policy but assign_ops is empty. Did you forget to call init_load_weights?"
|
|
)
|
|
with self.graph.as_default():
|
|
feed_dict = {}
|
|
for assign_ph, value in zip(self.assign_phs, values):
|
|
feed_dict[assign_ph] = value
|
|
self.sess.run(self.assign_ops, feed_dict=feed_dict)
|
|
|
|
def evaluate(
|
|
self, decision_requests: DecisionSteps, global_agent_ids: List[str]
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Evaluates policy for the agent experiences provided.
|
|
:param decision_requests: DecisionSteps input to network.
|
|
:return: Output from policy based on self.inference_dict.
|
|
"""
|
|
raise UnityPolicyException("The evaluate function was not implemented.")
|
|
|
|
def get_action(
|
|
self, decision_requests: DecisionSteps, worker_id: int = 0
|
|
) -> ActionInfo:
|
|
"""
|
|
Decides actions given observations information, and takes them in environment.
|
|
:param decision_requests: A dictionary of brain names and DecisionSteps from environment.
|
|
:param worker_id: In parallel environment training, the unique id of the environment worker that
|
|
the DecisionSteps came from. Used to construct a globally unique id for each agent.
|
|
:return: an ActionInfo containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
if len(decision_requests) == 0:
|
|
return ActionInfo.empty()
|
|
|
|
global_agent_ids = [
|
|
get_global_agent_id(worker_id, int(agent_id))
|
|
for agent_id in decision_requests.agent_id
|
|
] # For 1-D array, the iterator order is correct.
|
|
|
|
run_out = self.evaluate( # pylint: disable=assignment-from-no-return
|
|
decision_requests, global_agent_ids
|
|
)
|
|
|
|
self.save_memories(global_agent_ids, run_out.get("memory_out"))
|
|
return ActionInfo(
|
|
action=run_out.get("action"),
|
|
value=run_out.get("value"),
|
|
outputs=run_out,
|
|
agent_ids=decision_requests.agent_id,
|
|
)
|
|
|
|
def update(self, mini_batch, num_sequences):
|
|
"""
|
|
Performs update of the policy.
|
|
:param num_sequences: Number of experience trajectories in batch.
|
|
:param mini_batch: Batch of experiences.
|
|
:return: Results of update.
|
|
"""
|
|
raise UnityPolicyException("The update function was not implemented.")
|
|
|
|
def _execute_model(self, feed_dict, out_dict):
|
|
"""
|
|
Executes model.
|
|
:param feed_dict: Input dictionary mapping nodes to input data.
|
|
:param out_dict: Output dictionary mapping names to nodes.
|
|
:return: Dictionary mapping names to input data.
|
|
"""
|
|
network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict)
|
|
run_out = dict(zip(list(out_dict.keys()), network_out))
|
|
return run_out
|
|
|
|
def fill_eval_dict(self, feed_dict, batched_step_result):
|
|
vec_vis_obs = SplitObservations.from_observations(batched_step_result.obs)
|
|
for i, _ in enumerate(vec_vis_obs.visual_observations):
|
|
feed_dict[self.visual_in[i]] = vec_vis_obs.visual_observations[i]
|
|
if self.use_vec_obs:
|
|
feed_dict[self.vector_in] = vec_vis_obs.vector_observations
|
|
if not self.use_continuous_act:
|
|
mask = np.ones(
|
|
(len(batched_step_result), np.sum(self.brain.vector_action_space_size)),
|
|
dtype=np.float32,
|
|
)
|
|
if batched_step_result.action_mask is not None:
|
|
mask = 1 - np.concatenate(batched_step_result.action_mask, axis=1)
|
|
feed_dict[self.action_masks] = mask
|
|
return feed_dict
|
|
|
|
def make_empty_memory(self, num_agents):
|
|
"""
|
|
Creates empty memory for use with RNNs
|
|
:param num_agents: Number of agents.
|
|
:return: Numpy array of zeros.
|
|
"""
|
|
return np.zeros((num_agents, self.m_size), dtype=np.float32)
|
|
|
|
def save_memories(
|
|
self, agent_ids: List[str], memory_matrix: Optional[np.ndarray]
|
|
) -> None:
|
|
if memory_matrix is None:
|
|
return
|
|
for index, agent_id in enumerate(agent_ids):
|
|
self.memory_dict[agent_id] = memory_matrix[index, :]
|
|
|
|
def retrieve_memories(self, agent_ids: List[str]) -> np.ndarray:
|
|
memory_matrix = np.zeros((len(agent_ids), self.m_size), dtype=np.float32)
|
|
for index, agent_id in enumerate(agent_ids):
|
|
if agent_id in self.memory_dict:
|
|
memory_matrix[index, :] = self.memory_dict[agent_id]
|
|
return memory_matrix
|
|
|
|
def remove_memories(self, agent_ids):
|
|
for agent_id in agent_ids:
|
|
if agent_id in self.memory_dict:
|
|
self.memory_dict.pop(agent_id)
|
|
|
|
def make_empty_previous_action(self, num_agents):
|
|
"""
|
|
Creates empty previous action for use with RNNs and discrete control
|
|
:param num_agents: Number of agents.
|
|
:return: Numpy array of zeros.
|
|
"""
|
|
return np.zeros((num_agents, self.num_branches), dtype=np.int)
|
|
|
|
def save_previous_action(
|
|
self, agent_ids: List[str], action_matrix: Optional[np.ndarray]
|
|
) -> None:
|
|
if action_matrix is None:
|
|
return
|
|
for index, agent_id in enumerate(agent_ids):
|
|
self.previous_action_dict[agent_id] = action_matrix[index, :]
|
|
|
|
def retrieve_previous_action(self, agent_ids: List[str]) -> np.ndarray:
|
|
action_matrix = np.zeros((len(agent_ids), self.num_branches), dtype=np.int)
|
|
for index, agent_id in enumerate(agent_ids):
|
|
if agent_id in self.previous_action_dict:
|
|
action_matrix[index, :] = self.previous_action_dict[agent_id]
|
|
return action_matrix
|
|
|
|
def remove_previous_action(self, agent_ids):
|
|
for agent_id in agent_ids:
|
|
if agent_id in self.previous_action_dict:
|
|
self.previous_action_dict.pop(agent_id)
|
|
|
|
def get_current_step(self):
|
|
"""
|
|
Gets current model step.
|
|
:return: current model step.
|
|
"""
|
|
step = self.sess.run(self.global_step)
|
|
return step
|
|
|
|
def _set_step(self, step: int) -> int:
|
|
"""
|
|
Sets current model step to step without creating additional ops.
|
|
:param step: Step to set the current model step to.
|
|
:return: The step the model was set to.
|
|
"""
|
|
current_step = self.get_current_step()
|
|
# Increment a positive or negative number of steps.
|
|
return self.increment_step(step - current_step)
|
|
|
|
def increment_step(self, n_steps):
|
|
"""
|
|
Increments model step.
|
|
"""
|
|
out_dict = {
|
|
"global_step": self.global_step,
|
|
"increment_step": self.increment_step_op,
|
|
}
|
|
feed_dict = {self.steps_to_increment: n_steps}
|
|
return self.sess.run(out_dict, feed_dict=feed_dict)["global_step"]
|
|
|
|
def get_inference_vars(self):
|
|
"""
|
|
:return:list of inference var names
|
|
"""
|
|
return list(self.inference_dict.keys())
|
|
|
|
def get_update_vars(self):
|
|
"""
|
|
:return:list of update var names
|
|
"""
|
|
return list(self.update_dict.keys())
|
|
|
|
def save_model(self, steps):
|
|
"""
|
|
Saves the model
|
|
:param steps: The number of steps the model was trained for
|
|
:return:
|
|
"""
|
|
with self.graph.as_default():
|
|
last_checkpoint = self.model_path + "/model-" + str(steps) + ".ckpt"
|
|
self.saver.save(self.sess, last_checkpoint)
|
|
tf.train.write_graph(
|
|
self.graph, self.model_path, "raw_graph_def.pb", as_text=False
|
|
)
|
|
|
|
def update_normalization(self, vector_obs: np.ndarray) -> None:
|
|
"""
|
|
If this policy normalizes vector observations, this will update the norm values in the graph.
|
|
:param vector_obs: The vector observations to add to the running estimate of the distribution.
|
|
"""
|
|
if self.use_vec_obs and self.normalize:
|
|
self.sess.run(
|
|
self.update_normalization_op, feed_dict={self.vector_in: vector_obs}
|
|
)
|
|
|
|
@property
|
|
def use_vis_obs(self):
|
|
return self.vis_obs_size > 0
|
|
|
|
@property
|
|
def use_vec_obs(self):
|
|
return self.vec_obs_size > 0
|
|
|
|
def _initialize_tensorflow_references(self):
|
|
self.value_heads: Dict[str, tf.Tensor] = {}
|
|
self.normalization_steps: Optional[tf.Variable] = None
|
|
self.running_mean: Optional[tf.Variable] = None
|
|
self.running_variance: Optional[tf.Variable] = None
|
|
self.update_normalization_op: Optional[tf.Operation] = None
|
|
self.value: Optional[tf.Tensor] = None
|
|
self.all_log_probs: tf.Tensor = None
|
|
self.total_log_probs: Optional[tf.Tensor] = None
|
|
self.entropy: Optional[tf.Tensor] = None
|
|
self.output_pre: Optional[tf.Tensor] = None
|
|
self.output: Optional[tf.Tensor] = None
|
|
self.selected_actions: tf.Tensor = None
|
|
self.action_masks: Optional[tf.Tensor] = None
|
|
self.prev_action: Optional[tf.Tensor] = None
|
|
self.memory_in: Optional[tf.Tensor] = None
|
|
self.memory_out: Optional[tf.Tensor] = None
|
|
|
|
def create_input_placeholders(self):
|
|
with self.graph.as_default():
|
|
(
|
|
self.global_step,
|
|
self.increment_step_op,
|
|
self.steps_to_increment,
|
|
) = ModelUtils.create_global_steps()
|
|
self.visual_in = ModelUtils.create_visual_input_placeholders(
|
|
self.brain.camera_resolutions
|
|
)
|
|
self.vector_in = ModelUtils.create_vector_input(self.vec_obs_size)
|
|
if self.normalize:
|
|
normalization_tensors = ModelUtils.create_normalizer(self.vector_in)
|
|
self.update_normalization_op = normalization_tensors.update_op
|
|
self.normalization_steps = normalization_tensors.steps
|
|
self.running_mean = normalization_tensors.running_mean
|
|
self.running_variance = normalization_tensors.running_variance
|
|
self.processed_vector_in = ModelUtils.normalize_vector_obs(
|
|
self.vector_in,
|
|
self.running_mean,
|
|
self.running_variance,
|
|
self.normalization_steps,
|
|
)
|
|
else:
|
|
self.processed_vector_in = self.vector_in
|
|
self.update_normalization_op = None
|
|
|
|
self.batch_size_ph = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="batch_size"
|
|
)
|
|
self.sequence_length_ph = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="sequence_length"
|
|
)
|
|
self.mask_input = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="masks"
|
|
)
|
|
# Only needed for PPO, but needed for BC module
|
|
self.epsilon = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon"
|
|
)
|
|
self.mask = tf.cast(self.mask_input, tf.int32)
|
|
|
|
tf.Variable(
|
|
int(self.brain.vector_action_space_type == "continuous"),
|
|
name="is_continuous_control",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
tf.Variable(
|
|
self._version_number_,
|
|
name="version_number",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
tf.Variable(
|
|
self.m_size, name="memory_size", trainable=False, dtype=tf.int32
|
|
)
|
|
if self.brain.vector_action_space_type == "continuous":
|
|
tf.Variable(
|
|
self.act_size[0],
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
else:
|
|
tf.Variable(
|
|
sum(self.act_size),
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|