Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

92 行
3.5 KiB

from typing import Dict, List
from mlagents.envs.base_env import BaseEnv
from mlagents.envs.env_manager import EnvManager, EnvironmentStep
from mlagents.envs.timers import timed
from mlagents.envs.action_info import ActionInfo
from mlagents.envs.brain import BrainParameters, AllBrainInfo
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents.envs.brain_conversion_utils import (
step_result_to_brain_info,
group_spec_to_brain_parameters,
)
class SimpleEnvManager(EnvManager):
"""
Simple implementation of the EnvManager interface that only handles one BaseEnv at a time.
This is generally only useful for testing; see SubprocessEnvManager for a production-quality implementation.
"""
def __init__(self, env: BaseEnv, float_prop_channel: FloatPropertiesChannel):
super().__init__()
self.shared_float_properties = float_prop_channel
self.env = env
self.previous_step: EnvironmentStep = EnvironmentStep(None, {}, None)
self.previous_all_action_info: Dict[str, ActionInfo] = {}
def step(self) -> List[EnvironmentStep]:
all_action_info = self._take_step(self.previous_step)
self.previous_all_action_info = all_action_info
for brain_name, action_info in all_action_info.items():
self.env.set_actions(brain_name, action_info.action)
self.env.step()
all_brain_info = self._generate_all_brain_info()
step_brain_info = all_brain_info
step_info = EnvironmentStep(
self.previous_step.current_all_brain_info,
step_brain_info,
self.previous_all_action_info,
)
self.previous_step = step_info
return [step_info]
def reset(
self, config: Dict[str, float] = None
) -> List[EnvironmentStep]: # type: ignore
if config is not None:
for k, v in config.items():
self.shared_float_properties.set_property(k, v)
self.env.reset()
all_brain_info = self._generate_all_brain_info()
self.previous_step = EnvironmentStep(None, all_brain_info, None)
return [self.previous_step]
@property
def external_brains(self) -> Dict[str, BrainParameters]:
result = {}
for brain_name in self.env.get_agent_groups():
result[brain_name] = group_spec_to_brain_parameters(
brain_name, self.env.get_agent_group_spec(brain_name)
)
return result
@property
def get_properties(self) -> Dict[str, float]:
reset_params = {}
for k in self.shared_float_properties.list_properties():
reset_params[k] = self.shared_float_properties.get_property(k)
return reset_params
def close(self):
self.env.close()
@timed
def _take_step(self, last_step: EnvironmentStep) -> Dict[str, ActionInfo]:
all_action_info: Dict[str, ActionInfo] = {}
for brain_name, brain_info in last_step.current_all_brain_info.items():
all_action_info[brain_name] = self.policies[brain_name].get_action(
brain_info
)
return all_action_info
def _generate_all_brain_info(self) -> AllBrainInfo:
all_brain_info = {}
for brain_name in self.env.get_agent_groups():
all_brain_info[brain_name] = step_result_to_brain_info(
self.env.get_step_result(brain_name),
self.env.get_agent_group_spec(brain_name),
)
return all_brain_info