Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
 
 
 
 
 

107 行
4.5 KiB

import unittest.mock as mock
import pytest
import numpy as np
import tensorflow as tf
from unitytrainers.bc.models import BehavioralCloningModel
from unityagents import UnityEnvironment
from .mock_communicator import MockCommunicator
@mock.patch('unityagents.UnityEnvironment.executable_launcher')
@mock.patch('unityagents.UnityEnvironment.get_communicator')
def test_cc_bc_model(mock_communicator, mock_launcher):
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0)
env = UnityEnvironment(' ')
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.sample_action, model.policy]
feed_dict = {model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
[3, 4, 5, 3, 4, 5]])}
sess.run(run_list, feed_dict=feed_dict)
env.close()
@mock.patch('unityagents.UnityEnvironment.executable_launcher')
@mock.patch('unityagents.UnityEnvironment.get_communicator')
def test_dc_bc_model(mock_communicator, mock_launcher):
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
mock_communicator.return_value = MockCommunicator(
discrete_action=True, visual_inputs=0)
env = UnityEnvironment(' ')
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.sample_action, model.policy]
feed_dict = {model.batch_size: 2,
model.dropout_rate: 1.0,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
[3, 4, 5, 3, 4, 5]])}
sess.run(run_list, feed_dict=feed_dict)
env.close()
@mock.patch('unityagents.UnityEnvironment.executable_launcher')
@mock.patch('unityagents.UnityEnvironment.get_communicator')
def test_visual_dc_bc_model(mock_communicator, mock_launcher):
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
mock_communicator.return_value = MockCommunicator(
discrete_action=True, visual_inputs=2)
env = UnityEnvironment(' ')
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.sample_action, model.policy]
feed_dict = {model.batch_size: 2,
model.dropout_rate: 1.0,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
[3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3]),
model.visual_in[1]: np.ones([2, 40, 30, 3])}
sess.run(run_list, feed_dict=feed_dict)
env.close()
@mock.patch('unityagents.UnityEnvironment.executable_launcher')
@mock.patch('unityagents.UnityEnvironment.get_communicator')
def test_visual_cc_bc_model(mock_communicator, mock_launcher):
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=2)
env = UnityEnvironment(' ')
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.sample_action, model.policy]
feed_dict = {model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
[3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3]),
model.visual_in[1]: np.ones([2, 40, 30, 3])}
sess.run(run_list, feed_dict=feed_dict)
env.close()
if __name__ == '__main__':
pytest.main()