Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

402 行
14 KiB

import unittest.mock as mock
import pytest
import numpy as np
from mlagents.tf_utils import tf
import yaml
from mlagents.trainers.ppo.models import PPOModel
from mlagents.trainers.ppo.trainer import PPOTrainer, discount_rewards
from mlagents.trainers.ppo.policy import PPOPolicy
from mlagents.trainers.rl_trainer import AllRewardsOutput
from mlagents.trainers.components.reward_signals import RewardSignalResult
from mlagents.envs.brain import BrainParameters
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.mock_communicator import MockCommunicator
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.mock_brain import make_brain_parameters
@pytest.fixture
def dummy_config():
return yaml.safe_load(
"""
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
curiosity_strength: 0.0
curiosity_enc_size: 1
summary_path: test
model_path: test
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
VECTOR_ACTION_SPACE = [2]
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 32
NUM_AGENTS = 12
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
def test_ppo_policy_evaluate(mock_communicator, mock_launcher, dummy_config):
tf.reset_default_graph()
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0
)
env = UnityEnvironment(" ")
brain_infos = env.reset()
brain_info = brain_infos[env.external_brain_names[0]]
trainer_parameters = dummy_config
model_path = env.external_brain_names[0]
trainer_parameters["model_path"] = model_path
trainer_parameters["keep_checkpoints"] = 3
policy = PPOPolicy(
0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False
)
run_out = policy.evaluate(brain_info)
assert run_out["action"].shape == (3, 2)
env.close()
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
def test_ppo_get_value_estimates(mock_communicator, mock_launcher, dummy_config):
tf.reset_default_graph()
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0
)
env = UnityEnvironment(" ")
brain_infos = env.reset()
brain_info = brain_infos[env.external_brain_names[0]]
trainer_parameters = dummy_config
model_path = env.external_brain_names[0]
trainer_parameters["model_path"] = model_path
trainer_parameters["keep_checkpoints"] = 3
policy = PPOPolicy(
0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False
)
run_out = policy.get_value_estimates(brain_info, 0, done=False)
for key, val in run_out.items():
assert type(key) is str
assert type(val) is float
run_out = policy.get_value_estimates(brain_info, 0, done=True)
for key, val in run_out.items():
assert type(key) is str
assert val == 0.0
# Check if we ignore terminal states properly
policy.reward_signals["extrinsic"].use_terminal_states = False
run_out = policy.get_value_estimates(brain_info, 0, done=True)
for key, val in run_out.items():
assert type(key) is str
assert val != 0.0
env.close()
def test_ppo_model_cc_vector():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = PPOModel(
make_brain_parameters(discrete_action=False, visual_inputs=0)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.log_probs,
model.value,
model.entropy,
model.learning_rate,
]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.epsilon: np.array([[0, 1], [2, 3]]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_ppo_model_cc_visual():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = PPOModel(
make_brain_parameters(discrete_action=False, visual_inputs=2)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.log_probs,
model.value,
model.entropy,
model.learning_rate,
]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3]),
model.visual_in[1]: np.ones([2, 40, 30, 3]),
model.epsilon: np.array([[0, 1], [2, 3]]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_ppo_model_dc_visual():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = PPOModel(
make_brain_parameters(discrete_action=True, visual_inputs=2)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3]),
model.visual_in[1]: np.ones([2, 40, 30, 3]),
model.action_masks: np.ones([2, 2]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_ppo_model_dc_vector():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = PPOModel(
make_brain_parameters(discrete_action=True, visual_inputs=0)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.action_masks: np.ones([2, 2]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_ppo_model_dc_vector_rnn():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
memory_size = 128
model = PPOModel(
make_brain_parameters(discrete_action=True, visual_inputs=0),
use_recurrent=True,
m_size=memory_size,
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
model.memory_out,
]
feed_dict = {
model.batch_size: 1,
model.sequence_length: 2,
model.prev_action: [[0], [0]],
model.memory_in: np.zeros((1, memory_size)),
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.action_masks: np.ones([1, 2]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_ppo_model_cc_vector_rnn():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
memory_size = 128
model = PPOModel(
make_brain_parameters(discrete_action=False, visual_inputs=0),
use_recurrent=True,
m_size=memory_size,
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
model.memory_out,
]
feed_dict = {
model.batch_size: 1,
model.sequence_length: 2,
model.memory_in: np.zeros((1, memory_size)),
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.epsilon: np.array([[0, 1]]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_rl_functions():
rewards = np.array([0.0, 0.0, 0.0, 1.0])
gamma = 0.9
returns = discount_rewards(rewards, gamma, 0.0)
np.testing.assert_array_almost_equal(returns, np.array([0.729, 0.81, 0.9, 1.0]))
def test_trainer_increment_step(dummy_config):
trainer_params = dummy_config
brain_params = BrainParameters(
brain_name="test_brain",
vector_observation_space_size=1,
camera_resolutions=[],
vector_action_space_size=[2],
vector_action_descriptions=[],
vector_action_space_type=0,
)
trainer = PPOTrainer(brain_params, 0, trainer_params, True, False, 0, "0", False)
policy_mock = mock.Mock()
step_count = 10
policy_mock.increment_step = mock.Mock(return_value=step_count)
trainer.policy = policy_mock
trainer.increment_step(5)
policy_mock.increment_step.assert_called_with(5)
assert trainer.step == 10
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@pytest.mark.parametrize("use_discrete", [True, False])
def test_trainer_update_policy(mock_env, dummy_config, use_discrete):
env, mock_brain, _ = mb.setup_mock_env_and_brains(
mock_env,
use_discrete,
False,
num_agents=NUM_AGENTS,
vector_action_space=VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
discrete_action_space=DISCRETE_ACTION_SPACE,
)
trainer_params = dummy_config
trainer_params["use_recurrent"] = True
# Test curiosity reward signal
trainer_params["reward_signals"]["curiosity"] = {}
trainer_params["reward_signals"]["curiosity"]["strength"] = 1.0
trainer_params["reward_signals"]["curiosity"]["gamma"] = 0.99
trainer_params["reward_signals"]["curiosity"]["encoding_size"] = 128
trainer = PPOTrainer(mock_brain, 0, trainer_params, True, False, 0, "0", False)
# Test update with sequence length smaller than batch size
buffer = mb.simulate_rollout(env, trainer.policy, BUFFER_INIT_SAMPLES)
# Mock out reward signal eval
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
buffer.update_buffer["extrinsic_returns"] = buffer.update_buffer["rewards"]
buffer.update_buffer["extrinsic_value_estimates"] = buffer.update_buffer["rewards"]
buffer.update_buffer["curiosity_rewards"] = buffer.update_buffer["rewards"]
buffer.update_buffer["curiosity_returns"] = buffer.update_buffer["rewards"]
buffer.update_buffer["curiosity_value_estimates"] = buffer.update_buffer["rewards"]
trainer.training_buffer = buffer
trainer.update_policy()
# Make batch length a larger multiple of sequence length
trainer.trainer_parameters["batch_size"] = 128
trainer.update_policy()
# Make batch length a larger non-multiple of sequence length
trainer.trainer_parameters["batch_size"] = 100
trainer.update_policy()
def test_add_rewards_output(dummy_config):
brain_params = BrainParameters(
brain_name="test_brain",
vector_observation_space_size=1,
camera_resolutions=[],
vector_action_space_size=[2],
vector_action_descriptions=[],
vector_action_space_type=0,
)
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
trainer = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0", False)
rewardsout = AllRewardsOutput(
reward_signals={
"extrinsic": RewardSignalResult(
scaled_reward=np.array([1.0, 1.0]), unscaled_reward=np.array([1.0, 1.0])
)
},
environment=np.array([1.0, 1.0]),
)
values = {"extrinsic": np.array([[2.0]])}
agent_id = "123"
idx = 0
# make sure that we're grabbing from the next_idx for rewards. If we're not, the test will fail.
next_idx = 1
trainer.add_rewards_outputs(
rewardsout,
values=values,
agent_id=agent_id,
agent_idx=idx,
agent_next_idx=next_idx,
)
assert trainer.training_buffer[agent_id]["extrinsic_value_estimates"][0] == 2.0
assert trainer.training_buffer[agent_id]["extrinsic_rewards"][0] == 1.0
if __name__ == "__main__":
pytest.main()