Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

403 行
15 KiB

import logging
from typing import Any, Dict, List, Optional
import numpy as np
from mlagents.tf_utils import tf
from mlagents import tf_utils
from mlagents_envs.exception import UnityException
from mlagents.trainers.policy import Policy
from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.trajectory import SplitObservations
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.brain_conversion_utils import get_global_agent_id
from mlagents_envs.base_env import BatchedStepResult
logger = logging.getLogger("mlagents.trainers")
class UnityPolicyException(UnityException):
"""
Related to errors with the Trainer.
"""
pass
class TFPolicy(Policy):
"""
Contains a learning model, and the necessary
functions to interact with it to perform evaluate and updating.
"""
def __init__(self, seed, brain, trainer_parameters):
"""
Initialized the policy.
:param seed: Random seed to use for TensorFlow.
:param brain: The corresponding Brain for this policy.
:param trainer_parameters: The trainer parameters.
"""
# for ghost trainer save/load snapshots
self.assign_phs = []
self.assign_ops = []
self.m_size = None
self.model = None
self.inference_dict = {}
self.update_dict = {}
self.sequence_length = 1
self.seed = seed
self.brain = brain
self.use_recurrent = trainer_parameters["use_recurrent"]
self.memory_dict: Dict[str, np.ndarray] = {}
self.reward_signals: Dict[str, "RewardSignal"] = {}
self.num_branches = len(self.brain.vector_action_space_size)
self.previous_action_dict: Dict[str, np.array] = {}
self.normalize = trainer_parameters.get("normalize", False)
self.use_continuous_act = brain.vector_action_space_type == "continuous"
if self.use_continuous_act:
self.num_branches = self.brain.vector_action_space_size[0]
self.model_path = trainer_parameters["model_path"]
self.keep_checkpoints = trainer_parameters.get("keep_checkpoints", 5)
self.graph = tf.Graph()
self.sess = tf.Session(
config=tf_utils.generate_session_config(), graph=self.graph
)
self.saver = None
if self.use_recurrent:
self.m_size = trainer_parameters["memory_size"]
self.sequence_length = trainer_parameters["sequence_length"]
if self.m_size == 0:
raise UnityPolicyException(
"The memory size for brain {0} is 0 even "
"though the trainer uses recurrent.".format(brain.brain_name)
)
elif self.m_size % 4 != 0:
raise UnityPolicyException(
"The memory size for brain {0} is {1} "
"but it must be divisible by 4.".format(
brain.brain_name, self.m_size
)
)
def _initialize_graph(self):
with self.graph.as_default():
self.saver = tf.train.Saver(max_to_keep=self.keep_checkpoints)
init = tf.global_variables_initializer()
self.sess.run(init)
def _load_graph(self):
with self.graph.as_default():
self.saver = tf.train.Saver(max_to_keep=self.keep_checkpoints)
logger.info("Loading Model for brain {}".format(self.brain.brain_name))
ckpt = tf.train.get_checkpoint_state(self.model_path)
if ckpt is None:
logger.info(
"The model {0} could not be found. Make "
"sure you specified the right "
"--run-id".format(self.model_path)
)
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
def get_weights(self):
with self.graph.as_default():
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
values = [v.eval(session=self.sess) for v in _vars]
return values
def init_load_weights(self):
with self.graph.as_default():
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
values = [v.eval(session=self.sess) for v in _vars]
for var, value in zip(_vars, values):
assign_ph = tf.placeholder(var.dtype, shape=value.shape)
self.assign_phs.append(assign_ph)
self.assign_ops.append(tf.assign(var, assign_ph))
def load_weights(self, values):
with self.graph.as_default():
feed_dict = {}
for assign_ph, value in zip(self.assign_phs, values):
feed_dict[assign_ph] = value
self.sess.run(self.assign_ops, feed_dict=feed_dict)
def evaluate(
self, batched_step_result: BatchedStepResult, global_agent_ids: List[str]
) -> Dict[str, Any]:
"""
Evaluates policy for the agent experiences provided.
:param batched_step_result: BatchedStepResult input to network.
:return: Output from policy based on self.inference_dict.
"""
raise UnityPolicyException("The evaluate function was not implemented.")
def get_action(
self, batched_step_result: BatchedStepResult, worker_id: int = 0
) -> ActionInfo:
"""
Decides actions given observations information, and takes them in environment.
:param batched_step_result: A dictionary of brain names and BatchedStepResult from environment.
:param worker_id: In parallel environment training, the unique id of the environment worker that
the BatchedStepResult came from. Used to construct a globally unique id for each agent.
:return: an ActionInfo containing action, memories, values and an object
to be passed to add experiences
"""
if batched_step_result.n_agents() == 0:
return ActionInfo.empty()
agents_done = [
agent
for agent, done in zip(
batched_step_result.agent_id, batched_step_result.done
)
if done
]
self.remove_memories(agents_done)
self.remove_previous_action(agents_done)
global_agent_ids = [
get_global_agent_id(worker_id, int(agent_id))
for agent_id in batched_step_result.agent_id
] # For 1-D array, the iterator order is correct.
run_out = self.evaluate( # pylint: disable=assignment-from-no-return
batched_step_result, global_agent_ids
)
self.save_memories(global_agent_ids, run_out.get("memory_out"))
return ActionInfo(
action=run_out.get("action"),
value=run_out.get("value"),
outputs=run_out,
agent_ids=batched_step_result.agent_id,
)
def update(self, mini_batch, num_sequences):
"""
Performs update of the policy.
:param num_sequences: Number of experience trajectories in batch.
:param mini_batch: Batch of experiences.
:return: Results of update.
"""
raise UnityPolicyException("The update function was not implemented.")
def _execute_model(self, feed_dict, out_dict):
"""
Executes model.
:param feed_dict: Input dictionary mapping nodes to input data.
:param out_dict: Output dictionary mapping names to nodes.
:return: Dictionary mapping names to input data.
"""
network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict)
run_out = dict(zip(list(out_dict.keys()), network_out))
return run_out
def fill_eval_dict(self, feed_dict, batched_step_result):
vec_vis_obs = SplitObservations.from_observations(batched_step_result.obs)
for i, _ in enumerate(vec_vis_obs.visual_observations):
feed_dict[self.model.visual_in[i]] = vec_vis_obs.visual_observations[i]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = vec_vis_obs.vector_observations
if not self.use_continuous_act:
mask = np.ones(
(
batched_step_result.n_agents(),
np.sum(self.brain.vector_action_space_size),
),
dtype=np.float32,
)
if batched_step_result.action_mask is not None:
mask = 1 - np.concatenate(batched_step_result.action_mask, axis=1)
feed_dict[self.model.action_masks] = mask
return feed_dict
def make_empty_memory(self, num_agents):
"""
Creates empty memory for use with RNNs
:param num_agents: Number of agents.
:return: Numpy array of zeros.
"""
return np.zeros((num_agents, self.m_size), dtype=np.float32)
def save_memories(
self, agent_ids: List[str], memory_matrix: Optional[np.ndarray]
) -> None:
if memory_matrix is None:
return
for index, agent_id in enumerate(agent_ids):
self.memory_dict[agent_id] = memory_matrix[index, :]
def retrieve_memories(self, agent_ids: List[str]) -> np.ndarray:
memory_matrix = np.zeros((len(agent_ids), self.m_size), dtype=np.float32)
for index, agent_id in enumerate(agent_ids):
if agent_id in self.memory_dict:
memory_matrix[index, :] = self.memory_dict[agent_id]
return memory_matrix
def remove_memories(self, agent_ids):
for agent_id in agent_ids:
if agent_id in self.memory_dict:
self.memory_dict.pop(agent_id)
def make_empty_previous_action(self, num_agents):
"""
Creates empty previous action for use with RNNs and discrete control
:param num_agents: Number of agents.
:return: Numpy array of zeros.
"""
return np.zeros((num_agents, self.num_branches), dtype=np.int)
def save_previous_action(
self, agent_ids: List[str], action_matrix: Optional[np.ndarray]
) -> None:
if action_matrix is None:
return
for index, agent_id in enumerate(agent_ids):
self.previous_action_dict[agent_id] = action_matrix[index, :]
def retrieve_previous_action(self, agent_ids: List[str]) -> np.ndarray:
action_matrix = np.zeros((len(agent_ids), self.num_branches), dtype=np.int)
for index, agent_id in enumerate(agent_ids):
if agent_id in self.previous_action_dict:
action_matrix[index, :] = self.previous_action_dict[agent_id]
return action_matrix
def remove_previous_action(self, agent_ids):
for agent_id in agent_ids:
if agent_id in self.previous_action_dict:
self.previous_action_dict.pop(agent_id)
def get_current_step(self):
"""
Gets current model step.
:return: current model step.
"""
step = self.sess.run(self.model.global_step)
return step
def increment_step(self, n_steps):
"""
Increments model step.
"""
out_dict = {
"global_step": self.model.global_step,
"increment_step": self.model.increment_step,
}
feed_dict = {self.model.steps_to_increment: n_steps}
return self.sess.run(out_dict, feed_dict=feed_dict)["global_step"]
def get_inference_vars(self):
"""
:return:list of inference var names
"""
return list(self.inference_dict.keys())
def get_update_vars(self):
"""
:return:list of update var names
"""
return list(self.update_dict.keys())
def save_model(self, steps):
"""
Saves the model
:param steps: The number of steps the model was trained for
:return:
"""
with self.graph.as_default():
last_checkpoint = self.model_path + "/model-" + str(steps) + ".ckpt"
self.saver.save(self.sess, last_checkpoint)
tf.train.write_graph(
self.graph, self.model_path, "raw_graph_def.pb", as_text=False
)
def update_normalization(self, vector_obs: np.ndarray) -> None:
"""
If this policy normalizes vector observations, this will update the norm values in the graph.
:param vector_obs: The vector observations to add to the running estimate of the distribution.
"""
if self.use_vec_obs and self.normalize:
self.sess.run(
self.model.update_normalization,
feed_dict={self.model.vector_in: vector_obs},
)
def get_batched_value_estimates(self, batch: AgentBuffer) -> Dict[str, np.ndarray]:
feed_dict: Dict[tf.Tensor, Any] = {
self.model.batch_size: batch.num_experiences,
self.model.sequence_length: 1, # We want to feed data in batch-wise, not time-wise.
}
if self.use_vec_obs:
feed_dict[self.model.vector_in] = batch["vector_obs"]
if self.model.vis_obs_size > 0:
for i in range(len(self.model.visual_in)):
_obs = batch["visual_obs%d" % i]
feed_dict[self.model.visual_in[i]] = _obs
if self.use_recurrent:
feed_dict[self.model.memory_in] = batch["memory"]
if not self.use_continuous_act and self.use_recurrent:
feed_dict[self.model.prev_action] = batch["prev_action"]
value_estimates = self.sess.run(self.model.value_heads, feed_dict)
value_estimates = {k: np.squeeze(v, axis=1) for k, v in value_estimates.items()}
return value_estimates
def get_value_estimates(
self, next_obs: List[np.ndarray], agent_id: str, done: bool
) -> Dict[str, float]:
"""
Generates value estimates for bootstrapping.
:param experience: AgentExperience to be used for bootstrapping.
:param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
:return: The value estimate dictionary with key being the name of the reward signal and the value the
corresponding value estimate.
"""
feed_dict: Dict[tf.Tensor, Any] = {
self.model.batch_size: 1,
self.model.sequence_length: 1,
}
vec_vis_obs = SplitObservations.from_observations(next_obs)
for i in range(len(vec_vis_obs.visual_observations)):
feed_dict[self.model.visual_in[i]] = [vec_vis_obs.visual_observations[i]]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = [vec_vis_obs.vector_observations]
if self.use_recurrent:
feed_dict[self.model.memory_in] = self.retrieve_memories([agent_id])
if not self.use_continuous_act and self.use_recurrent:
feed_dict[self.model.prev_action] = self.retrieve_previous_action(
[agent_id]
)
value_estimates = self.sess.run(self.model.value_heads, feed_dict)
value_estimates = {k: float(v) for k, v in value_estimates.items()}
# If we're done, reassign all of the value estimates that need terminal states.
if done:
for k in value_estimates:
if self.reward_signals[k].use_terminal_states:
value_estimates[k] = 0.0
return value_estimates
@property
def vis_obs_size(self):
return self.model.vis_obs_size
@property
def vec_obs_size(self):
return self.model.vec_obs_size
@property
def use_vis_obs(self):
return self.model.vis_obs_size > 0
@property
def use_vec_obs(self):
return self.model.vec_obs_size > 0