您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
399 行
17 KiB
399 行
17 KiB
using System.Linq;
|
|
using NUnit.Framework;
|
|
using UnityEngine;
|
|
using UnityEditor;
|
|
using Unity.Barracuda;
|
|
using Unity.MLAgents.Actuators;
|
|
using Unity.MLAgents.Inference;
|
|
using Unity.MLAgents.Sensors;
|
|
using Unity.MLAgents.Policies;
|
|
|
|
namespace Unity.MLAgents.Tests
|
|
{
|
|
public class Test3DSensorComponent : SensorComponent
|
|
{
|
|
public ISensor Sensor;
|
|
|
|
public override ISensor CreateSensor()
|
|
{
|
|
return Sensor;
|
|
}
|
|
|
|
public override int[] GetObservationShape()
|
|
{
|
|
var shape = Sensor.GetObservationSpec().Shape;
|
|
return new int[] { shape[0], shape[1], shape[2] };
|
|
}
|
|
}
|
|
public class Test3DSensor : ISensor, IBuiltInSensor, IDimensionPropertiesSensor
|
|
{
|
|
int m_Width;
|
|
int m_Height;
|
|
int m_Channels;
|
|
string m_Name;
|
|
// Dummy value for the IBuiltInSensor interface
|
|
public const int k_BuiltInSensorType = -42;
|
|
|
|
public Test3DSensor(string name, int width, int height, int channels)
|
|
{
|
|
m_Width = width;
|
|
m_Height = height;
|
|
m_Channels = channels;
|
|
m_Name = name;
|
|
}
|
|
|
|
public ObservationSpec GetObservationSpec()
|
|
{
|
|
return ObservationSpec.Visual(m_Height, m_Width, m_Channels);
|
|
}
|
|
|
|
public int Write(ObservationWriter writer)
|
|
{
|
|
for (int i = 0; i < m_Width * m_Height * m_Channels; i++)
|
|
{
|
|
writer[i] = 0.0f;
|
|
}
|
|
return m_Width * m_Height * m_Channels;
|
|
}
|
|
|
|
public byte[] GetCompressedObservation()
|
|
{
|
|
return new byte[0];
|
|
}
|
|
|
|
public void Update() { }
|
|
public void Reset() { }
|
|
|
|
public SensorCompressionType GetCompressionType()
|
|
{
|
|
return SensorCompressionType.None;
|
|
}
|
|
|
|
public string GetName()
|
|
{
|
|
return m_Name;
|
|
}
|
|
|
|
public BuiltInSensorType GetBuiltInSensorType()
|
|
{
|
|
return (BuiltInSensorType)k_BuiltInSensorType;
|
|
}
|
|
|
|
public DimensionProperty[] GetDimensionProperties()
|
|
{
|
|
return new[]
|
|
{
|
|
DimensionProperty.TranslationalEquivariance,
|
|
DimensionProperty.TranslationalEquivariance,
|
|
DimensionProperty.None
|
|
};
|
|
}
|
|
}
|
|
|
|
[TestFixture]
|
|
public class ParameterLoaderTest
|
|
{
|
|
// ONNX model with continuous/discrete action output (support hybrid action)
|
|
const string k_continuousONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action.onnx";
|
|
const string k_discreteONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_recurr.onnx";
|
|
const string k_hybridONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis53vec_3c_2daction.onnx";
|
|
// NN model with single action output (deprecated, does not support hybrid action).
|
|
// Same BrainParameters settings as the corresponding ONNX model.
|
|
const string k_continuousNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_deprecated.nn";
|
|
const string k_discreteNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_recurr_deprecated.nn";
|
|
NNModel continuousONNXModel;
|
|
NNModel discreteONNXModel;
|
|
NNModel hybridONNXModel;
|
|
NNModel continuousNNModel;
|
|
NNModel discreteNNModel;
|
|
Test3DSensorComponent sensor_21_20_3;
|
|
Test3DSensorComponent sensor_20_22_3;
|
|
|
|
BrainParameters GetContinuous2vis8vec2actionBrainParameters()
|
|
{
|
|
var validBrainParameters = new BrainParameters();
|
|
validBrainParameters.VectorObservationSize = 8;
|
|
validBrainParameters.NumStackedVectorObservations = 1;
|
|
validBrainParameters.ActionSpec = ActionSpec.MakeContinuous(2);
|
|
return validBrainParameters;
|
|
}
|
|
|
|
BrainParameters GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters()
|
|
{
|
|
var validBrainParameters = new BrainParameters();
|
|
validBrainParameters.VectorObservationSize = 0;
|
|
validBrainParameters.NumStackedVectorObservations = 1;
|
|
validBrainParameters.ActionSpec = ActionSpec.MakeDiscrete(2, 3);
|
|
return validBrainParameters;
|
|
}
|
|
|
|
BrainParameters GetHybridBrainParameters()
|
|
{
|
|
var validBrainParameters = new BrainParameters();
|
|
validBrainParameters.VectorObservationSize = 53;
|
|
validBrainParameters.NumStackedVectorObservations = 1;
|
|
validBrainParameters.ActionSpec = new ActionSpec(3, new[] { 2 });
|
|
return validBrainParameters;
|
|
}
|
|
|
|
[SetUp]
|
|
public void SetUp()
|
|
{
|
|
continuousONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousONNXPath, typeof(NNModel));
|
|
discreteONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteONNXPath, typeof(NNModel));
|
|
hybridONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybridONNXPath, typeof(NNModel));
|
|
continuousNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousNNPath, typeof(NNModel));
|
|
discreteNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteNNPath, typeof(NNModel));
|
|
var go = new GameObject("SensorA");
|
|
sensor_21_20_3 = go.AddComponent<Test3DSensorComponent>();
|
|
sensor_21_20_3.Sensor = new Test3DSensor("SensorA", 21, 20, 3);
|
|
sensor_20_22_3 = go.AddComponent<Test3DSensorComponent>();
|
|
sensor_20_22_3.Sensor = new Test3DSensor("SensorA", 20, 22, 3);
|
|
}
|
|
|
|
[Test]
|
|
public void TestModelExist()
|
|
{
|
|
Assert.IsNotNull(continuousONNXModel);
|
|
Assert.IsNotNull(discreteONNXModel);
|
|
Assert.IsNotNull(hybridONNXModel);
|
|
Assert.IsNotNull(continuousNNModel);
|
|
Assert.IsNotNull(discreteNNModel);
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestGetInputTensorsContinuous(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
|
|
var inputNames = model.GetInputNames();
|
|
// Model should contain 3 inputs : vector, visual 1 and visual 2
|
|
Assert.AreEqual(3, inputNames.Count());
|
|
Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
|
|
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
|
|
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "1", inputNames);
|
|
|
|
Assert.AreEqual(2, model.GetNumVisualInputs());
|
|
|
|
// Test if the model is null
|
|
model = null;
|
|
Assert.AreEqual(0, model.GetInputTensors().Count);
|
|
Assert.AreEqual(0, model.GetNumVisualInputs());
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestGetInputTensorsDiscrete(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
|
|
var inputNames = model.GetInputNames();
|
|
// Model should contain 2 inputs : recurrent and visual 1
|
|
|
|
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
|
|
// TODO :There are some memory tensors as well
|
|
}
|
|
|
|
[Test]
|
|
public void TestGetInputTensorsHybrid()
|
|
{
|
|
var model = ModelLoader.Load(hybridONNXModel);
|
|
var inputNames = model.GetInputNames();
|
|
Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestGetOutputTensorsContinuous(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
|
|
var outputNames = model.GetOutputNames();
|
|
var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.ContinuousActionOutput;
|
|
Assert.Contains(actionOutputName, outputNames);
|
|
Assert.AreEqual(1, outputNames.Count());
|
|
|
|
model = null;
|
|
Assert.AreEqual(0, model.GetOutputNames().Count());
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestGetOutputTensorsDiscrete(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
|
|
var outputNames = model.GetOutputNames();
|
|
var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.DiscreteActionOutput;
|
|
Assert.Contains(actionOutputName, outputNames);
|
|
// TODO : There are some memory tensors as well
|
|
}
|
|
|
|
[Test]
|
|
public void TestGetOutputTensorsHybrid()
|
|
{
|
|
var model = ModelLoader.Load(hybridONNXModel);
|
|
var outputNames = model.GetOutputNames();
|
|
|
|
Assert.AreEqual(2, outputNames.Count());
|
|
Assert.Contains(TensorNames.ContinuousActionOutput, outputNames);
|
|
Assert.Contains(TensorNames.DiscreteActionOutput, outputNames);
|
|
|
|
model = null;
|
|
Assert.AreEqual(0, model.GetOutputNames().Count());
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelValidContinuous(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
|
|
var validBrainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
|
|
var errors = BarracudaModelParamLoader.CheckModel(
|
|
model, validBrainParameters,
|
|
new ISensor[] { new VectorSensor(8), sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]
|
|
);
|
|
Assert.AreEqual(0, errors.Count()); // There should not be any errors
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelValidDiscrete(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
|
|
var validBrainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
|
|
|
|
var errors = BarracudaModelParamLoader.CheckModel(
|
|
model, validBrainParameters,
|
|
new ISensor[] { sensor_21_20_3.CreateSensor() }, new ActuatorComponent[0]
|
|
);
|
|
Assert.AreEqual(0, errors.Count()); // There should not be any errors
|
|
}
|
|
|
|
[Test]
|
|
public void TestCheckModelValidHybrid()
|
|
{
|
|
var model = ModelLoader.Load(hybridONNXModel);
|
|
var validBrainParameters = GetHybridBrainParameters();
|
|
|
|
var errors = BarracudaModelParamLoader.CheckModel(
|
|
model, validBrainParameters,
|
|
new ISensor[] { new VectorSensor(validBrainParameters.VectorObservationSize) }, new ActuatorComponent[0]
|
|
);
|
|
Assert.AreEqual(0, errors.Count()); // There should not be any errors
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelThrowsVectorObservationContinuous(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
|
|
|
|
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.VectorObservationSize = 9; // Invalid observation
|
|
var errors = BarracudaModelParamLoader.CheckModel(
|
|
model, brainParameters,
|
|
new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]
|
|
);
|
|
Assert.Greater(errors.Count(), 0);
|
|
|
|
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
|
|
errors = BarracudaModelParamLoader.CheckModel(
|
|
model, brainParameters,
|
|
new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]
|
|
);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelThrowsVectorObservationDiscrete(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
|
|
|
|
var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
|
|
brainParameters.VectorObservationSize = 1; // Invalid observation
|
|
var errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[Test]
|
|
public void TestCheckModelThrowsVectorObservationHybrid()
|
|
{
|
|
var model = ModelLoader.Load(hybridONNXModel);
|
|
|
|
var brainParameters = GetHybridBrainParameters();
|
|
brainParameters.VectorObservationSize = 9; // Invalid observation
|
|
var errors = BarracudaModelParamLoader.CheckModel(
|
|
model, brainParameters,
|
|
new ISensor[] { }, new ActuatorComponent[0]
|
|
);
|
|
Assert.Greater(errors.Count(), 0);
|
|
|
|
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
|
|
errors = BarracudaModelParamLoader.CheckModel(
|
|
model, brainParameters,
|
|
new ISensor[] { }, new ActuatorComponent[0]
|
|
);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelThrowsActionContinuous(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
|
|
|
|
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.ActionSpec = ActionSpec.MakeContinuous(3); // Invalid action
|
|
var errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
|
|
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3); // Invalid SpaceType
|
|
errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[TestCase(true)]
|
|
[TestCase(false)]
|
|
public void TestCheckModelThrowsActionDiscrete(bool useDeprecatedNNModel)
|
|
{
|
|
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
|
|
|
|
var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
|
|
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3, 3); // Invalid action
|
|
var errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
|
|
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.ActionSpec = ActionSpec.MakeContinuous(2); // Invalid SpaceType
|
|
errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[Test]
|
|
public void TestCheckModelThrowsActionHybrid()
|
|
{
|
|
var model = ModelLoader.Load(hybridONNXModel);
|
|
|
|
var brainParameters = GetHybridBrainParameters();
|
|
brainParameters.ActionSpec = new ActionSpec(3, new[] { 3 }); // Invalid discrete action size
|
|
var errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
|
|
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(2); // Missing continuous action
|
|
errors = BarracudaModelParamLoader.CheckModel(model, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
|
|
[Test]
|
|
public void TestCheckModelThrowsNoModel()
|
|
{
|
|
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
|
|
var errors = BarracudaModelParamLoader.CheckModel(null, brainParameters, new ISensor[] { sensor_21_20_3.CreateSensor(), sensor_20_22_3.CreateSensor() }, new ActuatorComponent[0]);
|
|
Assert.Greater(errors.Count(), 0);
|
|
}
|
|
}
|
|
}
|