161 行
5.2 KiB
161 行
5.2 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using Unity.Barracuda;
|
|
using Unity.MLAgents.Inference.Utils;
|
|
|
|
namespace Unity.MLAgents.Inference
|
|
{
|
|
/// <summary>
|
|
/// Tensor - A class to encapsulate a Tensor used for inference.
|
|
///
|
|
/// This class contains the Array that holds the data array, the shapes, type and the
|
|
/// placeholder in the execution graph. All the fields are editable in the inspector,
|
|
/// allowing the user to specify everything but the data in a graphical way.
|
|
/// </summary>
|
|
[Serializable]
|
|
internal class TensorProxy
|
|
{
|
|
public enum TensorType
|
|
{
|
|
Integer,
|
|
FloatingPoint
|
|
};
|
|
|
|
static readonly Dictionary<TensorType, Type> k_TypeMap =
|
|
new Dictionary<TensorType, Type>()
|
|
{
|
|
{TensorType.FloatingPoint, typeof(float)},
|
|
{TensorType.Integer, typeof(int)}
|
|
};
|
|
|
|
public string name;
|
|
public TensorType valueType;
|
|
|
|
// Since Type is not serializable, we use the DisplayType for the Inspector
|
|
public Type DataType => k_TypeMap[valueType];
|
|
public long[] shape;
|
|
public Tensor data;
|
|
|
|
public long Height
|
|
{
|
|
get { return shape.Length == 4 ? shape[1] : shape[5]; }
|
|
}
|
|
|
|
public long Width
|
|
{
|
|
get { return shape.Length == 4 ? shape[2] : shape[6]; }
|
|
}
|
|
|
|
public long Channels
|
|
{
|
|
get { return shape.Length == 4 ? shape[3] : shape[7]; }
|
|
}
|
|
}
|
|
|
|
internal static class TensorUtils
|
|
{
|
|
public static void ResizeTensor(TensorProxy tensor, int batch, ITensorAllocator allocator)
|
|
{
|
|
if (tensor.shape[0] == batch &&
|
|
tensor.data != null && tensor.data.batch == batch)
|
|
{
|
|
return;
|
|
}
|
|
|
|
tensor.data?.Dispose();
|
|
tensor.shape[0] = batch;
|
|
|
|
if (tensor.shape.Length == 4 || tensor.shape.Length == 8)
|
|
{
|
|
tensor.data = allocator.Alloc(
|
|
new TensorShape(
|
|
batch,
|
|
(int)tensor.Height,
|
|
(int)tensor.Width,
|
|
(int)tensor.Channels));
|
|
}
|
|
else
|
|
{
|
|
tensor.data = allocator.Alloc(
|
|
new TensorShape(
|
|
batch,
|
|
(int)tensor.shape[tensor.shape.Length - 1]));
|
|
}
|
|
}
|
|
|
|
internal static long[] TensorShapeFromBarracuda(TensorShape src)
|
|
{
|
|
if (src.height == 1 && src.width == 1)
|
|
{
|
|
return new long[] { src.batch, src.channels };
|
|
}
|
|
|
|
return new long[] { src.batch, src.height, src.width, src.channels };
|
|
}
|
|
|
|
public static TensorProxy TensorProxyFromBarracuda(Tensor src, string nameOverride = null)
|
|
{
|
|
var shape = TensorShapeFromBarracuda(src.shape);
|
|
return new TensorProxy
|
|
{
|
|
name = nameOverride ?? src.name,
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
shape = shape,
|
|
data = src
|
|
};
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fill a specific batch of a TensorProxy with a given value
|
|
/// </summary>
|
|
/// <param name="tensorProxy"></param>
|
|
/// <param name="batch">The batch index to fill.</param>
|
|
/// <param name="fillValue"></param>
|
|
public static void FillTensorBatch(TensorProxy tensorProxy, int batch, float fillValue)
|
|
{
|
|
var height = tensorProxy.data.height;
|
|
var width = tensorProxy.data.width;
|
|
var channels = tensorProxy.data.channels;
|
|
for (var h = 0; h < height; h++)
|
|
{
|
|
for (var w = 0; w < width; w++)
|
|
{
|
|
for (var c = 0; c < channels; c++)
|
|
{
|
|
tensorProxy.data[batch, h, w, c] = fillValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fill a pre-allocated Tensor with random numbers
|
|
/// </summary>
|
|
/// <param name="tensorProxy">The pre-allocated Tensor to fill</param>
|
|
/// <param name="randomNormal">RandomNormal object used to populate tensor</param>
|
|
/// <exception cref="NotImplementedException">
|
|
/// Throws when trying to fill a Tensor of type other than float
|
|
/// </exception>
|
|
/// <exception cref="ArgumentNullException">
|
|
/// Throws when the Tensor is not allocated
|
|
/// </exception>
|
|
public static void FillTensorWithRandomNormal(
|
|
TensorProxy tensorProxy, RandomNormal randomNormal)
|
|
{
|
|
if (tensorProxy.DataType != typeof(float))
|
|
{
|
|
throw new NotImplementedException("Only float data types are currently supported");
|
|
}
|
|
|
|
if (tensorProxy.data == null)
|
|
{
|
|
throw new ArgumentNullException();
|
|
}
|
|
|
|
for (var i = 0; i < tensorProxy.data.length; i++)
|
|
{
|
|
tensorProxy.data[i] = (float)randomNormal.NextDouble();
|
|
}
|
|
}
|
|
}
|
|
}
|