您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
183 行
5.4 KiB
183 行
5.4 KiB
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
from mlagents.trainers import tf
|
|
|
|
import yaml
|
|
import pytest
|
|
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.envs.subprocess_env_manager import EnvironmentStep
|
|
from mlagents.envs.sampler_class import SamplerManager
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
default:
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
"""
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def basic_trainer_controller():
|
|
return TrainerController(
|
|
model_path="test_model_path",
|
|
summaries_dir="test_summaries_dir",
|
|
run_id="test_run_id",
|
|
save_freq=100,
|
|
meta_curriculum=None,
|
|
train=True,
|
|
training_seed=99,
|
|
fast_simulation=True,
|
|
sampler_manager=SamplerManager({}),
|
|
resampling_interval=None,
|
|
trainers={},
|
|
)
|
|
|
|
|
|
@patch("numpy.random.seed")
|
|
@patch.object(tf, "set_random_seed")
|
|
def test_initialization_seed(numpy_random_seed, tensorflow_set_seed):
|
|
seed = 27
|
|
TrainerController(
|
|
model_path="",
|
|
summaries_dir="",
|
|
run_id="1",
|
|
save_freq=1,
|
|
meta_curriculum=None,
|
|
train=True,
|
|
training_seed=seed,
|
|
fast_simulation=True,
|
|
sampler_manager=SamplerManager({}),
|
|
resampling_interval=None,
|
|
trainers={},
|
|
)
|
|
numpy_random_seed.assert_called_with(seed)
|
|
tensorflow_set_seed.assert_called_with(seed)
|
|
|
|
|
|
def trainer_controller_with_start_learning_mocks():
|
|
trainer_mock = MagicMock()
|
|
trainer_mock.get_step = 0
|
|
trainer_mock.get_max_steps = 5
|
|
trainer_mock.parameters = {"some": "parameter"}
|
|
trainer_mock.write_tensorboard_text = MagicMock()
|
|
|
|
tc = basic_trainer_controller()
|
|
tc.initialize_trainers = MagicMock()
|
|
tc.trainers = {"testbrain": trainer_mock}
|
|
tc.advance = MagicMock()
|
|
tc.trainers["testbrain"].get_step = 0
|
|
|
|
def take_step_sideeffect(env):
|
|
tc.trainers["testbrain"].get_step += 1
|
|
if tc.trainers["testbrain"].get_step > 10:
|
|
raise KeyboardInterrupt
|
|
return 1
|
|
|
|
tc.advance.side_effect = take_step_sideeffect
|
|
|
|
tc._export_graph = MagicMock()
|
|
tc._save_model = MagicMock()
|
|
return tc, trainer_mock
|
|
|
|
|
|
@patch.object(tf, "reset_default_graph")
|
|
def test_start_learning_trains_forever_if_no_train_model(tf_reset_graph):
|
|
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
|
|
tc.train_model = False
|
|
|
|
tf_reset_graph.return_value = None
|
|
|
|
env_mock = MagicMock()
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock()
|
|
env_mock.external_brains = MagicMock()
|
|
|
|
tc.start_learning(env_mock)
|
|
tf_reset_graph.assert_called_once()
|
|
env_mock.reset.assert_called_once()
|
|
assert tc.advance.call_count == 11
|
|
tc._export_graph.assert_not_called()
|
|
tc._save_model.assert_not_called()
|
|
env_mock.close.assert_called_once()
|
|
|
|
|
|
@patch.object(tf, "reset_default_graph")
|
|
def test_start_learning_trains_until_max_steps_then_saves(tf_reset_graph):
|
|
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
|
|
tf_reset_graph.return_value = None
|
|
|
|
brain_info_mock = MagicMock()
|
|
env_mock = MagicMock()
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock(return_value=brain_info_mock)
|
|
env_mock.external_brains = MagicMock()
|
|
|
|
tc.start_learning(env_mock)
|
|
tf_reset_graph.assert_called_once()
|
|
env_mock.reset.assert_called_once()
|
|
assert tc.advance.call_count == trainer_mock.get_max_steps + 1
|
|
env_mock.close.assert_called_once()
|
|
tc._save_model.assert_called_once()
|
|
|
|
|
|
def trainer_controller_with_take_step_mocks():
|
|
trainer_mock = MagicMock()
|
|
trainer_mock.get_step = 0
|
|
trainer_mock.get_max_steps = 5
|
|
trainer_mock.parameters = {"some": "parameter"}
|
|
trainer_mock.write_tensorboard_text = MagicMock()
|
|
|
|
tc = basic_trainer_controller()
|
|
tc.trainers = {"testbrain": trainer_mock}
|
|
|
|
return tc, trainer_mock
|
|
|
|
|
|
def test_take_step_adds_experiences_to_trainer_and_trains():
|
|
tc, trainer_mock = trainer_controller_with_take_step_mocks()
|
|
|
|
old_step_info = EnvironmentStep(Mock(), Mock(), MagicMock())
|
|
new_step_info = EnvironmentStep(Mock(), Mock(), MagicMock())
|
|
trainer_mock.is_ready_update = MagicMock(return_value=True)
|
|
|
|
env_mock = MagicMock()
|
|
env_mock.step.return_value = [new_step_info]
|
|
env_mock.reset.return_value = [old_step_info]
|
|
|
|
tc.advance(env_mock)
|
|
env_mock.reset.assert_not_called()
|
|
env_mock.step.assert_called_once()
|
|
trainer_mock.add_experiences.assert_called_once_with(
|
|
new_step_info.previous_all_brain_info,
|
|
new_step_info.current_all_brain_info,
|
|
new_step_info.brain_name_to_action_info["testbrain"].outputs,
|
|
)
|
|
trainer_mock.process_experiences.assert_called_once_with(
|
|
new_step_info.previous_all_brain_info, new_step_info.current_all_brain_info
|
|
)
|
|
trainer_mock.update_policy.assert_called_once()
|
|
trainer_mock.increment_step.assert_called_once()
|