Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

334 行
11 KiB

import random
from typing import Dict, List, Any, Tuple
import numpy as np
from mlagents_envs.base_env import (
BaseEnv,
AgentGroupSpec,
BatchedStepResult,
ActionType,
)
from mlagents_envs.tests.test_rpc_utils import proto_from_batched_step_result_and_action
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
AgentInfoActionPairProto,
)
OBS_SIZE = 1
VIS_OBS_SIZE = (20, 20, 3)
STEP_SIZE = 0.1
TIME_PENALTY = 0.001
MIN_STEPS = int(1.0 / STEP_SIZE) + 1
SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY
def clamp(x, min_val, max_val):
return max(min_val, min(x, max_val))
class SimpleEnvironment(BaseEnv):
"""
Very simple "game" - the agent has a position on [-1, 1], gets a reward of 1 if it reaches 1, and a reward of -1 if
it reaches -1. The position is incremented by the action amount (clamped to [-step_size, step_size]).
"""
def __init__(
self,
brain_names,
use_discrete,
step_size=STEP_SIZE,
num_visual=0,
num_vector=1,
vis_obs_size=VIS_OBS_SIZE,
vec_obs_size=OBS_SIZE,
action_size=1,
):
super().__init__()
self.discrete = use_discrete
self.num_visual = num_visual
self.num_vector = num_vector
self.vis_obs_size = vis_obs_size
self.vec_obs_size = vec_obs_size
action_type = ActionType.DISCRETE if use_discrete else ActionType.CONTINUOUS
self.group_spec = AgentGroupSpec(
self._make_obs_spec(),
action_type,
tuple(2 for _ in range(action_size)) if use_discrete else action_size,
)
self.action_size = action_size
self.names = brain_names
self.positions: Dict[str, List[float]] = {}
self.step_count: Dict[str, float] = {}
self.random = random.Random(str(self.group_spec))
self.goal: Dict[str, int] = {}
self.action = {}
self.rewards: Dict[str, float] = {}
self.final_rewards: Dict[str, List[float]] = {}
self.step_result: Dict[str, BatchedStepResult] = {}
self.agent_id: Dict[str, int] = {}
self.step_size = step_size # defines the difficulty of the test
for name in self.names:
self.agent_id[name] = 0
self.goal[name] = self.random.choice([-1, 1])
self.rewards[name] = 0
self.final_rewards[name] = []
self._reset_agent(name)
self.action[name] = None
self.step_result[name] = None
def _make_obs_spec(self) -> List[Any]:
obs_spec: List[Any] = []
for _ in range(self.num_vector):
obs_spec.append((self.vec_obs_size,))
for _ in range(self.num_visual):
obs_spec.append(self.vis_obs_size)
return obs_spec
def _make_obs(self, value: float) -> List[np.ndarray]:
obs = []
for _ in range(self.num_vector):
obs.append(np.ones((1, self.vec_obs_size), dtype=np.float32) * value)
for _ in range(self.num_visual):
obs.append(np.ones((1,) + self.vis_obs_size, dtype=np.float32) * value)
return obs
def get_agent_groups(self):
return self.names
def get_agent_group_spec(self, name):
return self.group_spec
def set_action_for_agent(self, name, id, data):
pass
def set_actions(self, name, data):
self.action[name] = data
def get_step_result(self, name):
return self.step_result[name]
def _take_action(self, name: str) -> bool:
deltas = []
for _act in self.action[name][0]:
if self.discrete:
deltas.append(1 if _act else -1)
else:
deltas.append(_act)
for i, _delta in enumerate(deltas):
_delta = clamp(_delta, -self.step_size, self.step_size)
self.positions[name][i] += _delta
self.positions[name][i] = clamp(self.positions[name][i], -1, 1)
self.step_count[name] += 1
# Both must be in 1.0 to be done
done = all(pos >= 1.0 or pos <= -1.0 for pos in self.positions[name])
return done
def _generate_mask(self):
if self.discrete:
# LL-Python API will return an empty dim if there is only 1 agent.
ndmask = np.array(2 * self.action_size * [False], dtype=np.bool)
ndmask = np.expand_dims(ndmask, axis=0)
action_mask = [ndmask]
else:
action_mask = None
return action_mask
def _compute_reward(self, name: str, done: bool) -> float:
if done:
reward = 0.0
for _pos in self.positions[name]:
reward += (SUCCESS_REWARD * _pos * self.goal[name]) / len(
self.positions[name]
)
else:
reward = -TIME_PENALTY
return reward
def _reset_agent(self, name):
self.goal[name] = self.random.choice([-1, 1])
self.positions[name] = [0.0 for _ in range(self.action_size)]
self.step_count[name] = 0
self.final_rewards[name].append(self.rewards[name])
self.rewards[name] = 0
self.agent_id[name] = self.agent_id[name] + 1
def _make_batched_step(
self, name: str, done: bool, reward: float
) -> BatchedStepResult:
m_vector_obs = self._make_obs(self.goal[name])
m_reward = np.array([reward], dtype=np.float32)
m_done = np.array([done], dtype=np.bool)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
action_mask = self._generate_mask()
if done:
self._reset_agent(name)
new_vector_obs = self._make_obs(self.goal[name])
(
m_vector_obs,
m_reward,
m_done,
m_agent_id,
action_mask,
) = self._construct_reset_step(
m_vector_obs,
new_vector_obs,
m_reward,
m_done,
m_agent_id,
action_mask,
name,
)
return BatchedStepResult(
m_vector_obs,
m_reward,
m_done,
np.zeros(m_done.shape, dtype=bool),
m_agent_id,
action_mask,
)
def _construct_reset_step(
self,
vector_obs: List[np.ndarray],
new_vector_obs: List[np.ndarray],
reward: np.ndarray,
done: np.ndarray,
agent_id: np.ndarray,
action_mask: List[np.ndarray],
name: str,
) -> Tuple[List[np.ndarray], np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
new_reward = np.array([0.0], dtype=np.float32)
new_done = np.array([False], dtype=np.bool)
new_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
new_action_mask = self._generate_mask()
m_vector_obs = [
np.concatenate((old, new), axis=0)
for old, new in zip(vector_obs, new_vector_obs)
]
m_reward = np.concatenate((reward, new_reward), axis=0)
m_done = np.concatenate((done, new_done), axis=0)
m_agent_id = np.concatenate((agent_id, new_agent_id), axis=0)
if action_mask is not None:
action_mask = [
np.concatenate((old, new), axis=0)
for old, new in zip(action_mask, new_action_mask)
]
return m_vector_obs, m_reward, m_done, m_agent_id, action_mask
def step(self) -> None:
assert all(action is not None for action in self.action.values())
for name in self.names:
done = self._take_action(name)
reward = self._compute_reward(name, done)
self.rewards[name] += reward
self.step_result[name] = self._make_batched_step(name, done, reward)
def reset(self) -> None: # type: ignore
for name in self.names:
self._reset_agent(name)
self.step_result[name] = self._make_batched_step(name, False, 0.0)
@property
def reset_parameters(self) -> Dict[str, str]:
return {}
def close(self):
pass
class MemoryEnvironment(SimpleEnvironment):
def __init__(self, brain_names, use_discrete, step_size=0.2):
super().__init__(brain_names, use_discrete, step_size=step_size)
# Number of steps to reveal the goal for. Lower is harder. Should be
# less than 1/step_size to force agent to use memory
self.num_show_steps = 2
def _make_batched_step(
self, name: str, done: bool, reward: float
) -> BatchedStepResult:
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
m_vector_obs = self._make_obs(recurrent_obs_val)
m_reward = np.array([reward], dtype=np.float32)
m_done = np.array([done], dtype=np.bool)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
action_mask = self._generate_mask()
if done:
self._reset_agent(name)
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
new_vector_obs = self._make_obs(recurrent_obs_val)
(
m_vector_obs,
m_reward,
m_done,
m_agent_id,
action_mask,
) = self._construct_reset_step(
m_vector_obs,
new_vector_obs,
m_reward,
m_done,
m_agent_id,
action_mask,
name,
)
return BatchedStepResult(
m_vector_obs,
m_reward,
m_done,
np.zeros(m_done.shape, dtype=bool),
m_agent_id,
action_mask,
)
class RecordEnvironment(SimpleEnvironment):
def __init__(
self,
brain_names,
use_discrete,
step_size=0.2,
num_visual=0,
num_vector=1,
n_demos=30,
):
super().__init__(
brain_names,
use_discrete,
step_size=step_size,
num_visual=num_visual,
num_vector=num_vector,
)
self.demonstration_protos: Dict[str, List[AgentInfoActionPairProto]] = {}
self.n_demos = n_demos
for name in self.names:
self.demonstration_protos[name] = []
def step(self) -> None:
super().step()
for name in self.names:
self.demonstration_protos[
name
] += proto_from_batched_step_result_and_action(
self.step_result[name], self.action[name]
)
self.demonstration_protos[name] = self.demonstration_protos[name][
-self.n_demos :
]
def solve(self) -> None:
self.reset()
for _ in range(self.n_demos):
for name in self.names:
if self.discrete:
self.action[name] = [[1]] if self.goal[name] > 0 else [[0]]
else:
self.action[name] = [[float(self.goal[name])]]
self.step()