Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

251 行
11 KiB

import logging
import numpy as np
from mlagents.trainers.ppo.models import PPOModel
from mlagents.trainers.policy import Policy
logger = logging.getLogger("mlagents.trainers")
class PPOPolicy(Policy):
def __init__(self, seed, brain, trainer_params, is_training, load):
"""
Policy for Proximal Policy Optimization Networks.
:param seed: Random seed.
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param is_training: Whether the model should be trained.
:param load: Whether a pre-trained model will be loaded or a new one created.
"""
super().__init__(seed, brain, trainer_params)
self.has_updated = False
self.use_curiosity = bool(trainer_params["use_curiosity"])
with self.graph.as_default():
self.model = PPOModel(
brain,
lr=float(trainer_params["learning_rate"]),
h_size=int(trainer_params["hidden_units"]),
epsilon=float(trainer_params["epsilon"]),
beta=float(trainer_params["beta"]),
max_step=float(trainer_params["max_steps"]),
normalize=trainer_params["normalize"],
use_recurrent=trainer_params["use_recurrent"],
num_layers=int(trainer_params["num_layers"]),
m_size=self.m_size,
use_curiosity=bool(trainer_params["use_curiosity"]),
curiosity_strength=float(trainer_params["curiosity_strength"]),
curiosity_enc_size=float(trainer_params["curiosity_enc_size"]),
seed=seed,
)
if load:
self._load_graph()
else:
self._initialize_graph()
self.inference_dict = {
"action": self.model.output,
"log_probs": self.model.all_log_probs,
"value": self.model.value,
"entropy": self.model.entropy,
"learning_rate": self.model.learning_rate,
}
if self.use_continuous_act:
self.inference_dict["pre_action"] = self.model.output_pre
if self.use_recurrent:
self.inference_dict["memory_out"] = self.model.memory_out
if is_training and self.use_vec_obs and trainer_params["normalize"]:
self.inference_dict["update_mean"] = self.model.update_mean
self.inference_dict["update_variance"] = self.model.update_variance
self.update_dict = {
"value_loss": self.model.value_loss,
"policy_loss": self.model.policy_loss,
"update_batch": self.model.update_batch,
}
if self.use_curiosity:
self.update_dict["forward_loss"] = self.model.forward_loss
self.update_dict["inverse_loss"] = self.model.inverse_loss
def evaluate(self, brain_info):
"""
Evaluates policy for the agent experiences provided.
:param brain_info: BrainInfo object containing inputs.
:return: Outputs from network as defined by self.inference_dict.
"""
feed_dict = {
self.model.batch_size: len(brain_info.vector_observations),
self.model.sequence_length: 1,
}
epsilon = None
if self.use_recurrent:
if not self.use_continuous_act:
feed_dict[
self.model.prev_action
] = brain_info.previous_vector_actions.reshape(
[-1, len(self.model.act_size)]
)
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = brain_info.memories
if self.use_continuous_act:
epsilon = np.random.normal(
size=(len(brain_info.vector_observations), self.model.act_size[0])
)
feed_dict[self.model.epsilon] = epsilon
feed_dict = self._fill_eval_dict(feed_dict, brain_info)
run_out = self._execute_model(feed_dict, self.inference_dict)
if self.use_continuous_act:
run_out["random_normal_epsilon"] = epsilon
return run_out
def update(self, mini_batch, num_sequences):
"""
Updates model using buffer.
:param num_sequences: Number of trajectories in batch.
:param mini_batch: Experience batch.
:return: Output from update process.
"""
feed_dict = {
self.model.batch_size: num_sequences,
self.model.sequence_length: self.sequence_length,
self.model.mask_input: mini_batch["masks"].flatten(),
self.model.returns_holder: mini_batch["discounted_returns"].flatten(),
self.model.old_value: mini_batch["value_estimates"].flatten(),
self.model.advantage: mini_batch["advantages"].reshape([-1, 1]),
self.model.all_old_log_probs: mini_batch["action_probs"].reshape(
[-1, sum(self.model.act_size)]
),
}
if self.use_continuous_act:
feed_dict[self.model.output_pre] = mini_batch["actions_pre"].reshape(
[-1, self.model.act_size[0]]
)
feed_dict[self.model.epsilon] = mini_batch["random_normal_epsilon"].reshape(
[-1, self.model.act_size[0]]
)
else:
feed_dict[self.model.action_holder] = mini_batch["actions"].reshape(
[-1, len(self.model.act_size)]
)
if self.use_recurrent:
feed_dict[self.model.prev_action] = mini_batch["prev_action"].reshape(
[-1, len(self.model.act_size)]
)
feed_dict[self.model.action_masks] = mini_batch["action_mask"].reshape(
[-1, sum(self.brain.vector_action_space_size)]
)
if self.use_vec_obs:
feed_dict[self.model.vector_in] = mini_batch["vector_obs"].reshape(
[-1, self.vec_obs_size]
)
if self.use_curiosity:
feed_dict[self.model.next_vector_in] = mini_batch[
"next_vector_in"
].reshape([-1, self.vec_obs_size])
if self.model.vis_obs_size > 0:
for i, _ in enumerate(self.model.visual_in):
_obs = mini_batch["visual_obs%d" % i]
if self.sequence_length > 1 and self.use_recurrent:
(_batch, _seq, _w, _h, _c) = _obs.shape
feed_dict[self.model.visual_in[i]] = _obs.reshape([-1, _w, _h, _c])
else:
feed_dict[self.model.visual_in[i]] = _obs
if self.use_curiosity:
for i, _ in enumerate(self.model.visual_in):
_obs = mini_batch["next_visual_obs%d" % i]
if self.sequence_length > 1 and self.use_recurrent:
(_batch, _seq, _w, _h, _c) = _obs.shape
feed_dict[self.model.next_visual_in[i]] = _obs.reshape(
[-1, _w, _h, _c]
)
else:
feed_dict[self.model.next_visual_in[i]] = _obs
if self.use_recurrent:
mem_in = mini_batch["memory"][:, 0, :]
feed_dict[self.model.memory_in] = mem_in
self.has_updated = True
run_out = self._execute_model(feed_dict, self.update_dict)
return run_out
def get_intrinsic_rewards(self, curr_info, next_info):
"""
Generates intrinsic reward used for Curiosity-based training.
:BrainInfo curr_info: Current BrainInfo.
:BrainInfo next_info: Next BrainInfo.
:return: Intrinsic rewards for all agents.
"""
if self.use_curiosity:
if len(curr_info.agents) == 0:
return []
feed_dict = {
self.model.batch_size: len(next_info.vector_observations),
self.model.sequence_length: 1,
}
if self.use_continuous_act:
feed_dict[
self.model.selected_actions
] = next_info.previous_vector_actions
else:
feed_dict[self.model.action_holder] = next_info.previous_vector_actions
for i in range(self.model.vis_obs_size):
feed_dict[self.model.visual_in[i]] = curr_info.visual_observations[i]
feed_dict[self.model.next_visual_in[i]] = next_info.visual_observations[
i
]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = curr_info.vector_observations
feed_dict[self.model.next_vector_in] = next_info.vector_observations
if self.use_recurrent:
if curr_info.memories.shape[1] == 0:
curr_info.memories = self.make_empty_memory(len(curr_info.agents))
feed_dict[self.model.memory_in] = curr_info.memories
intrinsic_rewards = self.sess.run(
self.model.intrinsic_reward, feed_dict=feed_dict
) * float(self.has_updated)
return intrinsic_rewards
else:
return None
def get_value_estimate(self, brain_info, idx):
"""
Generates value estimates for bootstrapping.
:param brain_info: BrainInfo to be used for bootstrapping.
:param idx: Index in BrainInfo of agent.
:return: Value estimate.
"""
feed_dict = {self.model.batch_size: 1, self.model.sequence_length: 1}
for i in range(len(brain_info.visual_observations)):
feed_dict[self.model.visual_in[i]] = [
brain_info.visual_observations[i][idx]
]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = [brain_info.vector_observations[idx]]
if self.use_recurrent:
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
if not self.use_continuous_act and self.use_recurrent:
feed_dict[self.model.prev_action] = brain_info.previous_vector_actions[
idx
].reshape([-1, len(self.model.act_size)])
value_estimate = self.sess.run(self.model.value, feed_dict)
return value_estimate
def get_last_reward(self):
"""
Returns the last reward the trainer has had
:return: the new last reward
"""
return self.sess.run(self.model.last_reward)
def update_reward(self, new_reward):
"""
Updates reward value for policy.
:param new_reward: New reward to save.
"""
self.sess.run(
self.model.update_reward, feed_dict={self.model.new_reward: new_reward}
)