Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

148 行
6.8 KiB

from typing import List, Dict
from collections import defaultdict, Counter
import numpy as np
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.trajectory import Trajectory, AgentExperience
from mlagents.trainers.brain import BrainInfo
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.action_info import ActionInfoOutputs
class AgentProcessor:
"""
AgentProcessor contains a dictionary per-agent trajectory buffers. The buffers are indexed by agent_id.
Buffer also contains an update_buffer that corresponds to the buffer used when updating the model.
One AgentProcessor should be created per agent group.
"""
def __init__(self, trainer: Trainer, policy: TFPolicy, max_trajectory_length: int):
"""
Create an AgentProcessor.
:param trainer: Trainer instance connected to this AgentProcessor. Trainer is given trajectory
when it is finished.
:param policy: Policy instance associated with this AgentProcessor.
:param max_trajectory_length: Maximum length of a trajectory before it is added to the trainer.
"""
self.experience_buffers: Dict[str, List[AgentExperience]] = defaultdict(list)
self.last_brain_info: Dict[str, BrainInfo] = {}
self.last_take_action_outputs: Dict[str, ActionInfoOutputs] = {}
self.stats: Dict[str, List[float]] = defaultdict(list)
# Note: this is needed until we switch to AgentExperiences as the data input type.
# We still need some info from the policy (memories, previous actions)
# that really should be gathered by the env-manager.
self.policy = policy
self.episode_steps: Counter = Counter()
self.episode_rewards: Dict[str, float] = defaultdict(lambda: 0.0)
if max_trajectory_length:
self.max_trajectory_length = max_trajectory_length
self.ignore_max_length = False
else:
self.max_trajectory_length = 0
self.ignore_max_length = True
self.trainer = trainer
def add_experiences(
self,
curr_info: BrainInfo,
next_info: BrainInfo,
take_action_outputs: ActionInfoOutputs,
) -> None:
"""
Adds experiences to each agent's experience history.
:param curr_info: current BrainInfo.
:param next_info: next BrainInfo.
:param take_action_outputs: The outputs of the Policy's get_action method.
"""
if take_action_outputs:
self.stats["Policy/Entropy"].append(take_action_outputs["entropy"].mean())
self.stats["Policy/Learning Rate"].append(
take_action_outputs["learning_rate"]
)
for name, values in take_action_outputs["value_heads"].items():
self.stats[name].append(np.mean(values))
for agent_id in curr_info.agents:
self.last_brain_info[agent_id] = curr_info
self.last_take_action_outputs[agent_id] = take_action_outputs
# Store the environment reward
tmp_environment_reward = np.array(next_info.rewards, dtype=np.float32)
for agent_id in next_info.agents:
stored_info = self.last_brain_info.get(agent_id, None)
stored_take_action_outputs = self.last_take_action_outputs.get(
agent_id, None
)
if stored_info is not None:
idx = stored_info.agents.index(agent_id)
next_idx = next_info.agents.index(agent_id)
obs = []
if not stored_info.local_done[idx]:
for i, _ in enumerate(stored_info.visual_observations):
obs.append(stored_info.visual_observations[i][idx])
if self.policy.use_vec_obs:
obs.append(stored_info.vector_observations[idx])
if self.policy.use_recurrent:
memory = self.policy.retrieve_memories([agent_id])[0, :]
else:
memory = None
done = next_info.local_done[next_idx]
max_step = next_info.max_reached[next_idx]
# Add the outputs of the last eval
action = stored_take_action_outputs["action"][idx]
if self.policy.use_continuous_act:
action_pre = stored_take_action_outputs["pre_action"][idx]
else:
action_pre = None
action_probs = stored_take_action_outputs["log_probs"][idx]
action_masks = stored_info.action_masks[idx]
prev_action = self.policy.retrieve_previous_action([agent_id])[0, :]
values = stored_take_action_outputs["value_heads"]
experience = AgentExperience(
obs=obs,
reward=tmp_environment_reward[next_idx],
done=done,
action=action,
action_probs=action_probs,
action_pre=action_pre,
action_mask=action_masks,
prev_action=prev_action,
max_step=max_step,
memory=memory,
)
# Add the value outputs if needed
self.experience_buffers[agent_id].append(experience)
if (
next_info.local_done[next_idx]
or (
not self.ignore_max_length
and len(self.experience_buffers[agent_id])
>= self.max_trajectory_length
)
) and len(self.experience_buffers[agent_id]) > 0:
# Make next AgentExperience
next_obs = []
for i, _ in enumerate(next_info.visual_observations):
next_obs.append(next_info.visual_observations[i][next_idx])
if self.policy.use_vec_obs:
next_obs.append(next_info.vector_observations[next_idx])
trajectory = Trajectory(
steps=self.experience_buffers[agent_id],
agent_id=agent_id,
next_obs=next_obs,
)
# This will eventually be replaced with a queue
self.trainer.process_trajectory(trajectory)
self.experience_buffers[agent_id] = []
elif not next_info.local_done[next_idx]:
if agent_id not in self.episode_steps:
self.episode_steps[agent_id] = 0
self.episode_steps[agent_id] += 1
self.policy.save_previous_action(
curr_info.agents, take_action_outputs["action"]
)