Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

157 行
5.1 KiB

using System;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Inference.Utils;
using Unity.Barracuda;
using NUnit.Framework;
namespace Unity.MLAgents.Tests
{
public class TensorUtilsTest
{
[TestCase(4, TestName = "TestResizeTensor_4D")]
[TestCase(8, TestName = "TestResizeTensor_8D")]
public void TestResizeTensor(int dimension)
{
if (dimension == 8)
{
// Barracuda 1.0.x doesn't support 8D tensors
// Barracuda 1.1.x does but it initially broke ML-Agents support
// Unfortunately, the PackageInfo methods don't exist in earlier versions of the editor,
// so just skip that variant of the test then.
// It's unlikely, but possible that we'll upgrade to a newer dependency of Barracuda,
// in which case we should make sure this test is run then.
#if UNITY_2019_3_OR_NEWER
var packageInfo = UnityEditor.PackageManager.PackageInfo.FindForAssembly(typeof(Tensor).Assembly);
Assert.AreEqual("com.unity.barracuda", packageInfo.name);
var barracuda8DSupport = new Version(1, 1, 0);
var strippedBarracudaVersion = packageInfo.version.Replace("-preview", "");
var version = new Version(strippedBarracudaVersion);
if (version <= barracuda8DSupport)
{
return;
}
#else
return;
#endif
}
var alloc = new TensorCachingAllocator();
var height = 64;
var width = 84;
var channels = 3;
// Set shape to {1, ..., height, width, channels}
// For 8D, the ... are all 1's
var shape = new long[dimension];
for (var i = 0; i < dimension; i++)
{
shape[i] = 1;
}
shape[dimension - 3] = height;
shape[dimension - 2] = width;
shape[dimension - 1] = channels;
var intShape = new int[dimension];
for (var i = 0; i < dimension; i++)
{
intShape[i] = (int)shape[i];
}
var tensorProxy = new TensorProxy
{
valueType = TensorProxy.TensorType.Integer,
data = new Tensor(intShape),
shape = shape,
};
// These should be invariant after the resize.
Assert.AreEqual(height, tensorProxy.data.shape.height);
Assert.AreEqual(width, tensorProxy.data.shape.width);
Assert.AreEqual(channels, tensorProxy.data.shape.channels);
TensorUtils.ResizeTensor(tensorProxy, 42, alloc);
Assert.AreEqual(height, tensorProxy.shape[dimension - 3]);
Assert.AreEqual(width, tensorProxy.shape[dimension - 2]);
Assert.AreEqual(channels, tensorProxy.shape[dimension - 1]);
Assert.AreEqual(height, tensorProxy.data.shape.height);
Assert.AreEqual(width, tensorProxy.data.shape.width);
Assert.AreEqual(channels, tensorProxy.data.shape.channels);
alloc.Dispose();
}
[Test]
public void RandomNormalTestTensorInt()
{
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
valueType = TensorProxy.TensorType.Integer
};
Assert.Throws<NotImplementedException>(
() => TensorUtils.FillTensorWithRandomNormal(t, rn));
}
[Test]
public void RandomNormalTestDataNull()
{
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint
};
Assert.Throws<ArgumentNullException>(
() => TensorUtils.FillTensorWithRandomNormal(t, rn));
}
[Test]
public void RandomNormalTestTensor()
{
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(1, 3, 4, 2)
};
TensorUtils.FillTensorWithRandomNormal(t, rn);
var reference = new[]
{
-0.4315872f,
-1.11074f,
0.3414804f,
-1.130287f,
0.1413168f,
-0.5105762f,
-0.3027347f,
-0.2645015f,
1.225356f,
-0.02921959f,
0.3716498f,
-1.092338f,
0.9561074f,
-0.5018106f,
1.167787f,
-0.7763879f,
-0.07491868f,
0.5396146f,
-0.1377991f,
0.3331701f,
0.06144788f,
0.9520947f,
1.088157f,
-1.177194f,
};
for (var i = 0; i < t.data.length; i++)
{
Assert.AreEqual(t.data[i], reference[i], 0.0001);
}
}
}
}