您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
193 行
5.2 KiB
193 行
5.2 KiB
using System;
|
|
using Unity.Barracuda;
|
|
using NUnit.Framework;
|
|
using UnityEngine;
|
|
using Unity.MLAgents.Inference;
|
|
using Unity.MLAgents.Inference.Utils;
|
|
|
|
namespace Unity.MLAgents.Tests
|
|
{
|
|
public class DiscreteActionOutputApplierTest
|
|
{
|
|
[Test]
|
|
public void TestEvalP()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
data = new Tensor(1, 3, new[] { 0.1f, 0.2f, 0.7f }),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
data = new Tensor(1, 3),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
DiscreteActionOutputApplier.Eval(src, dst, m);
|
|
|
|
float[] reference = { 2, 2, 1 };
|
|
for (var i = 0; i < dst.data.length; i++)
|
|
{
|
|
Assert.AreEqual(reference[i], dst.data[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
[Test]
|
|
public void TestEvalLogits()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
data = new Tensor(
|
|
1,
|
|
3,
|
|
new[] { Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50 }),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
data = new Tensor(1, 3),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
DiscreteActionOutputApplier.Eval(src, dst, m);
|
|
|
|
float[] reference = { 2, 2, 2 };
|
|
for (var i = 0; i < dst.data.length; i++)
|
|
{
|
|
Assert.AreEqual(reference[i], dst.data[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
[Test]
|
|
public void TestEvalBatching()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
data = new Tensor(2, 3, new[]
|
|
{
|
|
Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50,
|
|
Mathf.Log(0.3f) - 25, Mathf.Log(0.4f) - 25, Mathf.Log(0.3f) - 25
|
|
}),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
data = new Tensor(2, 3),
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
DiscreteActionOutputApplier.Eval(src, dst, m);
|
|
|
|
float[] reference = { 2, 2, 2, 0, 1, 0 };
|
|
for (var i = 0; i < dst.data.length; i++)
|
|
{
|
|
Assert.AreEqual(reference[i], dst.data[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
[Test]
|
|
public void TestSrcInt()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.Integer
|
|
};
|
|
|
|
Assert.Throws<NotImplementedException>(
|
|
() => DiscreteActionOutputApplier.Eval(src, null, m));
|
|
}
|
|
|
|
[Test]
|
|
public void TestDstInt()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.Integer
|
|
};
|
|
|
|
Assert.Throws<ArgumentException>(
|
|
() => DiscreteActionOutputApplier.Eval(src, dst, m));
|
|
}
|
|
|
|
[Test]
|
|
public void TestSrcDataNull()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
Assert.Throws<ArgumentNullException>(
|
|
() => DiscreteActionOutputApplier.Eval(src, dst, m));
|
|
}
|
|
|
|
[Test]
|
|
public void TestDstDataNull()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = new Tensor(0, 1)
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
Assert.Throws<ArgumentNullException>(
|
|
() => DiscreteActionOutputApplier.Eval(src, dst, m));
|
|
}
|
|
|
|
[Test]
|
|
public void TestUnequalBatchSize()
|
|
{
|
|
var m = new Multinomial(2018);
|
|
|
|
var src = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = new Tensor(1, 1)
|
|
};
|
|
|
|
var dst = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = new Tensor(2, 1)
|
|
};
|
|
|
|
Assert.Throws<ArgumentException>(
|
|
() => DiscreteActionOutputApplier.Eval(src, dst, m));
|
|
}
|
|
}
|
|
}
|