Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

504 行
18 KiB

from typing import Callable, List, Dict, Tuple, Optional
import abc
import torch
from torch import nn
from mlagents_envs.base_env import ActionType
from mlagents.trainers.torch.distributions import (
GaussianDistribution,
MultiCategoricalDistribution,
DistInstance,
)
from mlagents.trainers.settings import NetworkSettings
from mlagents.trainers.torch.utils import ModelUtils
from mlagents.trainers.torch.decoders import ValueHeads
from mlagents.trainers.torch.layers import LSTM
ActivationFunction = Callable[[torch.Tensor], torch.Tensor]
EncoderFunction = Callable[
[torch.Tensor, int, ActivationFunction, int, str, bool], torch.Tensor
]
EPSILON = 1e-7
class NetworkBody(nn.Module):
def __init__(
self,
observation_shapes: List[Tuple[int, ...]],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
):
super().__init__()
self.normalize = network_settings.normalize
self.use_lstm = network_settings.memory is not None
self.h_size = network_settings.hidden_units
self.m_size = (
network_settings.memory.memory_size
if network_settings.memory is not None
else 0
)
self.visual_encoders, self.vector_encoders = ModelUtils.create_encoders(
observation_shapes,
self.h_size,
network_settings.num_layers,
network_settings.vis_encode_type,
unnormalized_inputs=encoded_act_size,
normalize=self.normalize,
)
if self.use_lstm:
self.lstm = LSTM(self.h_size, self.m_size)
else:
self.lstm = None # type: ignore
def update_normalization(self, vec_inputs: List[torch.Tensor]) -> None:
for vec_input, vec_enc in zip(vec_inputs, self.vector_encoders):
vec_enc.update_normalization(vec_input)
def copy_normalization(self, other_network: "NetworkBody") -> None:
if self.normalize:
for n1, n2 in zip(self.vector_encoders, other_network.vector_encoders):
n1.copy_normalization(n2)
@property
def memory_size(self) -> int:
return self.lstm.memory_size if self.use_lstm else 0
def forward(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
encodes = []
for idx, encoder in enumerate(self.vector_encoders):
vec_input = vec_inputs[idx]
if actions is not None:
hidden = encoder(vec_input, actions)
else:
hidden = encoder(vec_input)
encodes.append(hidden)
for idx, encoder in enumerate(self.visual_encoders):
vis_input = vis_inputs[idx]
if not torch.onnx.is_in_onnx_export():
vis_input = vis_input.permute([0, 3, 1, 2])
hidden = encoder(vis_input)
encodes.append(hidden)
if len(encodes) == 0:
raise Exception("No valid inputs to network.")
# Constants don't work in Barracuda
encoding = encodes[0]
if len(encodes) > 1:
for _enc in encodes[1:]:
encoding += _enc
if self.use_lstm:
# Resize to (batch, sequence length, encoding size)
encoding = encoding.reshape([-1, sequence_length, self.h_size])
encoding, memories = self.lstm(encoding, memories)
encoding = encoding.reshape([-1, self.m_size // 2])
return encoding, memories
class ValueNetwork(nn.Module):
def __init__(
self,
stream_names: List[str],
observation_shapes: List[Tuple[int, ...]],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
outputs_per_stream: int = 1,
):
# This is not a typo, we want to call __init__ of nn.Module
nn.Module.__init__(self)
self.network_body = NetworkBody(
observation_shapes, network_settings, encoded_act_size=encoded_act_size
)
if network_settings.memory is not None:
encoding_size = network_settings.memory.memory_size // 2
else:
encoding_size = network_settings.hidden_units
self.value_heads = ValueHeads(stream_names, encoding_size, outputs_per_stream)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def forward(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories = self.network_body(
vec_inputs, vis_inputs, actions, memories, sequence_length
)
output = self.value_heads(encoding)
return output, memories
class Actor(abc.ABC):
@abc.abstractmethod
def update_normalization(self, vector_obs: List[torch.Tensor]) -> None:
"""
Updates normalization of Actor based on the provided List of vector obs.
:param vector_obs: A List of vector obs as tensors.
"""
pass
@abc.abstractmethod
def sample_action(self, dists: List[DistInstance]) -> List[torch.Tensor]:
"""
Takes a List of Distribution iinstances and samples an action from each.
"""
pass
@abc.abstractmethod
def get_dists(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[List[DistInstance], Optional[torch.Tensor]]:
"""
Returns distributions from this Actor, from which actions can be sampled.
If memory is enabled, return the memories as well.
:param vec_inputs: A List of vector inputs as tensors.
:param vis_inputs: A List of visual inputs as tensors.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of a List of action distribution instances, and memories.
Memories will be None if not using memory.
"""
pass
@abc.abstractmethod
def forward(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, int, int, int, int]:
"""
Forward pass of the Actor for inference. This is required for export to ONNX, and
the inputs and outputs of this method should not be changed without a respective change
in the ONNX export code.
"""
pass
class ActorCritic(Actor):
@abc.abstractmethod
def critic_pass(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
Get value outputs for the given obs.
:param vec_inputs: List of vector inputs as tensors.
:param vis_inputs: List of visual inputs as tensors.
:param memories: Tensor of memories, if using memory. Otherwise, None.
:returns: Dict of reward stream to output tensor for values.
"""
pass
@abc.abstractmethod
def get_dist_and_value(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[List[DistInstance], Dict[str, torch.Tensor], torch.Tensor]:
"""
Returns distributions, from which actions can be sampled, and value estimates.
If memory is enabled, return the memories as well.
:param vec_inputs: A List of vector inputs as tensors.
:param vis_inputs: A List of visual inputs as tensors.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of a List of action distribution instances, a Dict of reward signal
name to value estimate, and memories. Memories will be None if not using memory.
"""
pass
@abc.abstractproperty
def memory_size(self):
"""
Returns the size of the memory (same size used as input and output in the other
methods) used by this Actor.
"""
pass
class SimpleActor(nn.Module, Actor):
def __init__(
self,
observation_shapes: List[Tuple[int, ...]],
network_settings: NetworkSettings,
act_type: ActionType,
act_size: List[int],
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
super().__init__()
self.act_type = act_type
self.act_size = act_size
self.version_number = torch.nn.Parameter(torch.Tensor([2.0]))
self.is_continuous_int = torch.nn.Parameter(
torch.Tensor([int(act_type == ActionType.CONTINUOUS)])
)
self.act_size_vector = torch.nn.Parameter(torch.Tensor(act_size))
self.network_body = NetworkBody(observation_shapes, network_settings)
if network_settings.memory is not None:
self.encoding_size = network_settings.memory.memory_size // 2
else:
self.encoding_size = network_settings.hidden_units
if self.act_type == ActionType.CONTINUOUS:
self.distribution = GaussianDistribution(
self.encoding_size,
act_size[0],
conditional_sigma=conditional_sigma,
tanh_squash=tanh_squash,
)
else:
self.distribution = MultiCategoricalDistribution(
self.encoding_size, act_size
)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def update_normalization(self, vector_obs: List[torch.Tensor]) -> None:
self.network_body.update_normalization(vector_obs)
def sample_action(self, dists: List[DistInstance]) -> List[torch.Tensor]:
actions = []
for action_dist in dists:
action = action_dist.sample()
actions.append(action)
return actions
def get_dists(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[List[DistInstance], Optional[torch.Tensor]]:
encoding, memories = self.network_body(
vec_inputs, vis_inputs, memories=memories, sequence_length=sequence_length
)
if self.act_type == ActionType.CONTINUOUS:
dists = self.distribution(encoding)
else:
dists = self.distribution(encoding, masks)
return dists, memories
def forward(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, int, int, int, int]:
"""
Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.
"""
dists, _ = self.get_dists(vec_inputs, vis_inputs, masks, memories, 1)
action_list = self.sample_action(dists)
sampled_actions = torch.stack(action_list, dim=-1)
if self.act_type == ActionType.CONTINUOUS:
action_out = sampled_actions
else:
action_out = dists[0].all_log_prob()
return (
action_out,
self.version_number,
torch.Tensor([self.network_body.memory_size]),
self.is_continuous_int,
self.act_size_vector,
)
class SharedActorCritic(SimpleActor, ActorCritic):
def __init__(
self,
observation_shapes: List[Tuple[int, ...]],
network_settings: NetworkSettings,
act_type: ActionType,
act_size: List[int],
stream_names: List[str],
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
super().__init__(
observation_shapes,
network_settings,
act_type,
act_size,
conditional_sigma,
tanh_squash,
)
self.stream_names = stream_names
self.value_heads = ValueHeads(stream_names, self.encoding_size)
def critic_pass(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories_out = self.network_body(
vec_inputs, vis_inputs, memories=memories, sequence_length=sequence_length
)
return self.value_heads(encoding), memories_out
def get_dist_and_value(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[List[DistInstance], Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories = self.network_body(
vec_inputs, vis_inputs, memories=memories, sequence_length=sequence_length
)
if self.act_type == ActionType.CONTINUOUS:
dists = self.distribution(encoding)
else:
dists = self.distribution(encoding, masks=masks)
value_outputs = self.value_heads(encoding)
return dists, value_outputs, memories
class SeparateActorCritic(SimpleActor, ActorCritic):
def __init__(
self,
observation_shapes: List[Tuple[int, ...]],
network_settings: NetworkSettings,
act_type: ActionType,
act_size: List[int],
stream_names: List[str],
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
# Give the Actor only half the memories. Note we previously validate
# that memory_size must be a multiple of 4.
self.use_lstm = network_settings.memory is not None
super().__init__(
observation_shapes,
network_settings,
act_type,
act_size,
conditional_sigma,
tanh_squash,
)
self.stream_names = stream_names
self.critic = ValueNetwork(stream_names, observation_shapes, network_settings)
@property
def memory_size(self) -> int:
return self.network_body.memory_size + self.critic.memory_size
def critic_pass(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
actor_mem, critic_mem = None, None
if self.use_lstm:
# Use only the back half of memories for critic
actor_mem, critic_mem = torch.split(memories, self.memory_size // 2, -1)
value_outputs, critic_mem_out = self.critic(
vec_inputs, vis_inputs, memories=critic_mem, sequence_length=sequence_length
)
if actor_mem is not None:
# Make memories with the actor mem unchanged
memories_out = torch.cat([actor_mem, critic_mem_out], dim=-1)
else:
memories_out = None
return value_outputs, memories_out
def get_dist_and_value(
self,
vec_inputs: List[torch.Tensor],
vis_inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[List[DistInstance], Dict[str, torch.Tensor], torch.Tensor]:
if self.use_lstm:
# Use only the back half of memories for critic and actor
actor_mem, critic_mem = torch.split(memories, self.memory_size // 2, dim=-1)
else:
critic_mem = None
actor_mem = None
dists, actor_mem_outs = self.get_dists(
vec_inputs,
vis_inputs,
memories=actor_mem,
sequence_length=sequence_length,
masks=masks,
)
value_outputs, critic_mem_outs = self.critic(
vec_inputs, vis_inputs, memories=critic_mem, sequence_length=sequence_length
)
if self.use_lstm:
mem_out = torch.cat([actor_mem_outs, critic_mem_outs], dim=-1)
else:
mem_out = None
return dists, value_outputs, mem_out
class GlobalSteps(nn.Module):
def __init__(self):
super().__init__()
self.__global_step = nn.Parameter(torch.Tensor([0]), requires_grad=False)
@property
def current_step(self):
return int(self.__global_step.item())
@current_step.setter
def current_step(self, value):
self.__global_step[:] = value
def increment(self, value):
self.__global_step += value
class LearningRate(nn.Module):
def __init__(self, lr):
# Todo: add learning rate decay
super().__init__()
self.learning_rate = torch.Tensor([lr])